

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
CrossTalk The Journal of Defense Software Engineering. Volume 24,
Number 4, July/August 2011

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CrossTalk—July/August 2011

CONTENTs CrossTalk
OUSD(AT&L) Stephen P. Welby
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Advisor Kasey Thompson
Article Coordinator Lynne Wade
Managing Director Brent Baxter
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-775-5555
E-mail stsc.customerservice@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the Under Secretary of Defense for Acquisition,
Technology and Logistics (OUSD(AT&L)); U.S. Navy (USN); U.S.
Air Force (USAF); and the U.S. Department of Homeland Defense
(DHS). USD(AT&L) co-sponsor: Deputy Assistant Secretary of
Defense for Systems Engineering. USN co-sponsor: Naval Air
Systems Command. USAF co-sponsor: Ogden-ALC 309 SMXG.
DHS co-sponsor: National Cyber Security Division in the National
Protection and Program Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Quantitative Project Management Framework
via Integrating Six Sigma and PSP/TSP
Using this framework, software engineers and project managers can
quantitatively manage software projects for improving processes by
applying Six Sigma in conjunction with PSP/TSP.
by Sejun Kim, Okjoo Choi, and Jongmoon Baik

Driving Major Change: The Balance Between
Methods and People
The challenges of implementing an innovative and collaborative environ-
ment in the context of scaling an agile system engineering method to a
large combined effort.
by David M. Moore, Portia Crowe, and Robert Cloutier

Power and Influence Charting: The Google Way
The success or failure of a project may be charted in the initiation phase.
Therefore, initiation is arguably the most important phase of any project.
by Sharon Berrett and Troy Hiltbrand

Product Thinking in Process Improvement
Key decisions ranging from high level strategies to the deployment of
improvements can become much simpler when we view the approach
of our process improvement work in the same way we would for the
development of more conventional software products.
by Terry Leip

Software Estimation: Developing an Accurate,
Reliable Method
From a management perspective, it is essential that software estimates
used in a TSP launch are as accurate as possible. A software team that
uses both proxy-based and size-based estimates is able to accurately
plan, launch, and execute on schedule.
by Bob Sinclair, Chris Rickets, and Brad Hodgins

Challenges in Deploying Static Analysis Tools
There are many challenges facing static analysis tool deployments. Al-
though static analysis tools have some weaknesses, the main challenge
stems from people. Whether the tool deployment succeeds or fails
depends on the people behind it.
by Piyush Jain, DTV Ramakrishna Rao, and Sathyanand Balan

11

6

15
20

25

32

Management Practices for Quality Products

Departments

Cover Design by Kent Bingham

	 3	 From the Sponsor

	 4	 Tribute to Watts Humphrey

	 37	 Open Forum

	39	 BackTalk

mailto:stsc.customerservice@hill.af.mil
http://www.crosstalkonline.org
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines
mailto:webmaster@luminpublishing.com
http://www.luminpublishing.com

CrossTalk—July/August 2011 3

 FROM THE SPONSOR

Management Practices
for Quality Products

CrossTalk would like to thank
NAVAIR for sponsoring this issue.

Management practices leading to the delivery of quality
products are affected first and foremost by the responsibili-
ties associated with the roles of the managers in an organiza-
tion. By this I mean those responsibilities should be pushed
further down into the organization to have an affect on the
plans and the quality of the products delivered.

Redefining management means that it can no longer come
from just the top of an organization. Current senior managers
of programs and projects must extend the focus of being a
manager down to the working level of a project. Each engi-
neer becomes a manager of the work done. In teams, these
manager-type engineers come together to plan the work
given to them by the senior managers. This will result in a
team plan based upon recent experience and historical data.
This type of team environment produces plans that are both
aggressive and realistic. Plans are granular so that progress
will be tracked in hours and days versus classic plans that are
tracked in weeks and months.

With this low-level management structure in place, senior
managers can become better leaders. They are better
equipped to support and protect their teams. For example,
when new requirement changes come along, senior manag-
ers go to their team of manager-engineers, get estimates, and
then go back to customers with choices based upon data.

Quality means different things to various individuals. Funda-
mentally, quality is about delivering products to the customer
that meet their functional needs. Beneath that, the product de-
livered must be maintainable, reliable, and useable. To achieve
these quality requirements, projects must manage the mistakes
made while the product is developed. When quality is managed
poorly–or not at all–the results include schedules that blow
up and related major cost overruns for funding used to pay for
additional time spent working and reworking the product. 	

Years ago when I began doing process improvement, I
established a milestone for success. It was when I observed
management asking about quality every time they asked
about cost and schedule. What I have come to realize through
the realization of spreading the definition of management
down into the teams, is that this has already happened.
Engineers have also taken on roles of management as they

plan and track their work. Senior managers have become
better leaders as they have allowed management responsibili-
ties to move down into the teams doing the work. They better
understand the quality and look for it in the products delivered
as well as in the processes used.

Based upon the management approach of teams manag-
ing their own work comes the question of what really makes
quality happen. Product teams and the managers above them
are first given the understanding that people who do the
work will make mistakes. Simply put, managing quality means
managing mistakes. This happens when those mistakes are
discovered and corrected as soon as possible. Earlier atten-
tion to product quality by itself dramatically contributes to
cost control and staying on schedule. Increasing the number
of places for removing mistakes and doing so earlier in the
process allows teams to plan their work in a way that sup-
ports the delivery of the highest quality products on cost and
within schedule.

What I have described here are some parts of the approach
we have applied at NAVAIR. It is based upon the original
work of Watts Humphrey and SEI. It is known as the Team
Software Process. We have used this approach with many
software teams and non-software teams with great success.

The old saying, “Better-faster-cheaper, pick any two,” does
not hold up when better management practices and attention
to quality are applied. You can have all three when you enable
the teams doing the work to manage themselves in a domain
of planning based upon data, tracking product tasks with data,
and early detection of mistakes so that quality products are
delivered on budget and on schedule.

	 Jeffrey Schwalb
	 Naval Air Systems Command

SPECIAL TRIBUTE

4 CrossTalk—July/August 2011

(1927-2010)
Carnegie Mellon Software Engineering Institute

Watts Humphrey

The Father of
Software Quality

SPECIAL TRIBUTE

CrossTalk—July/August 2011 5

When Watts Humphrey arrived at the SEI in 1986, he
made what he called an, “outrageous commitment to
change the world of software engineering.”

By all accounts, he succeeded. Known as the “Father
of Software Quality,” Humphrey dedicated his career to
addressing problems in software development including
schedule delays, cost increases, performance problems, and
defects. In 2005, Humphrey received the National Medal of
Technology, the highest honor awarded by the President of
the United States to America’s leading innovators.

“He was a wonderful leader and a wonderful man. He
set forth an energizing goal and an inspiring mission that
we all wanted to be a part of,” said Anita Carleton, direc-
tor of SEI’s Software Engineering Process Management
program, who was initially hired by Humphrey.

An Outrageous Commitment
When he arrived at SEI after working for nearly three

decades at IBM, he came with a vision: Software could be
managed by process.

“Changing the world of anything is an outrageous personal
commitment. I felt it needed to be done. I knew I couldn’t do it
alone,” Humphrey explained in a 2010 interview.

“We all understood the importance of things such as version
control, configuration management, and methodology, but I don’t
think anyone knew how to put those into a transferable form,”
said Larry Druffel, SEI director and CEO from 1986 to 1996.

Working with a team, Humphrey identified characteristics of
best practices in software engineering that began to lay the
groundwork for what would become the CMM® and eventually,
the CMMI®.

After being named the first SEI Fellow–an honor given to
individuals who have made an outstanding commitment to the
work of SEI–Humphrey focused on the development of the Per-
sonal Software ProcessSM (PSP) and Team Software ProcessSM
(TSP) initiatives.

The Beginnings of PSP and TSP
Jim Over, who now leads the TSP initiative at SEI, said Hum-

phrey had begun his work in bringing discipline to the individual
software engineer–the basis for the PSP–long before his ap-
pointment as an SEI Fellow.

Humphrey first tested his theories on a process that he
developed for managing his personal checking account. Next, he
tested them on the personal software development process by
writing more than 60 small programs in Pascal and C++, Over
explained. Humphrey then began working with organizations to
pilot this new personal process for software engineers.

Not long after, Humphrey published his first PSP book, “A
Discipline for Software Engineering,” and developed a course for
software engineers. Over, who enrolled in the first PSP course
offered at Carnegie Mellon, said it changed his career.

“When you learn how to properly measure your own perfor-
mance and analyze the result in order to improve, you get real,
lasting, behavioral change that leads to performance gains and
improvement,” Over explained. The class, he said, went from
underestimating its work by about 40 % to being within a few
points under or over on each assignment. “We had a 10 times
reduction in the number of defects that escaped to the unit
testing phase by the end of the course. These results were
unbelievable. If I hadn’t been there, I would not have thought this
possible.” After the course, Over began working with Humphrey
to transition PSP and TSP into software engineering practice.

Humphrey faced many naysayers, Druffel recalled. With
each critic, he would listen and adjust his approach, but never
once did he give up on the idea that he could teach software
engineers the skills that they needed to track their own work,
adhere to plans, and develop defect-free software. After PSP
was established, Humphrey applied those same concepts to en-
gineering groups as part of TSP. Today, TSP has been adopted
by leading software organizations across the globe including
Intuit, Oracle, and Adobe.

“What Watts brought is an acceptance of the discipline of
software engineering,” Druffel explained. “He was working on
these ideas when he left IBM in 1986. When he died in 2010,
he was still working on related concepts. That’s persistence.”

Disclaimer:
®CMMI and ®CMM are registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

SMPSP and SMTSP are service marks of Carnegie Mellon University.

6 CrossTalk—July/August 2011

Management Practices for Quality Products

Introduction
The advent of CMMI® has helped software engineers and

project managers understand the principles and approaches of
software process improvement [1, 2]. Many people believe if an
organization achieves a higher CMMI maturity level, a higher
performance of the software processes follows. The perfor-
mance they achieve depends on their executions of each CMMI
Process Area (PA). CMMI is a framework that helps improve
software product quality and productivity but not processes.
CMMI describes the characteristics of processes but not the
processes themselves. In other words, CMMI just includes “what.”
There have been difficulties in increasing productivity with these
models because “how” is not within the scope of the CMMI. Thus,
software engineers and project managers know the goal of their
project, but they do not know how to implement each procedure
of the CMMI PAs or have the means to improve the processes
for their goal. SEI has introduced “how to” technologies for CMMI
at the individual and team level with PSP and TSP. There are also
several “how to” technologies, appraisal methods, PSP/TSP, and
measurement and analysis tools, which are foundations of the
solution for high performance of software process [3].

Figure 1: The “How to” Technologies for high performance

In this article, we focus on the integrated use of Six Sigma
and PSP/TSP for higher performance of software processes
and project management. PSP helps individual developers
improve their performance by bringing a discipline to the way
that they develop their software [4]. TSP provides software en-
gineers and managers with a way to establish and manage their
team to produce high quality software within a given schedule
and budget [5]. Six Sigma is a quality improvement approach
to enhancing an organization’s performance by using statistical
analytic techniques [6]. It provides the quantitative analysis tools
necessary to control process performance.

Many organizations that endeavor to improve software
processes often find themselves integrating many approaches
to achieve that improvement. Integrating Six Sigma and PSP/
TSP can enable software engineers and project managers to
analyze PSP/TSP data and to systematically improve process
performance at an organization level. To do this, we map Six
Sigma tools to each PSP/TSP process in order to show what
Six Sigma techniques can be applied to the data of a given
PSP/TSP and suggest Six Sigma practical usage guidelines to
support process improvement activities at an individual and team
level. However, there are a few analysis tools, such as process
dashboard [7], Hackystat [8, 9], and PSP Assistant [10], and
systematic process control functionality metrics collected in
PSP/TSP activities. This article suggests Six Sigma and PSP/
TSP tools that we have developed and proposes a framework
for integrating those tools based on a knowledge-base reposi-
tory. Thus, we can create a quantitative project management
methodology by integrating Six Sigma and PSP/TSP based on
a knowledge-base repository.

Integrating the “How to” Technologies
Six Sigma supports software process improvement in PSP/

TSP activities and helps organizations to achieve process
improvement goals at an organizational level. PSP provides
individual level project data containing information from what
should be done to what has been done. Then, TSP is used in
order to extend the collected data into a team view. Despite the
fact that TSP activities are mostly based on the PSP results,
PSP and TSP should be handled in different ways according to
their different points of view. This means that the way of utilizing
Six Sigma for each process should be different.

Quantitative Project
Management
Framework
via Integrating
Six Sigma and PSP/TSP

Abstract: Process technologies such as Personal Software ProcessSM
(PSP) and Team Software ProcessSM (TSP) provide a good foundation
for Six Sigma applications in business. Business approaches using Six
Sigma provide methods for process improvement and analysis to achieve
the goals of the PSP/TSP. This article discusses a framework with which
software engineers and project managers can quantitatively manage
software projects for improving the processes by applying Six Sigma in
conjunction with PSP/TSP.

Sejun Kim, BISTel

Okjoo Choi, KAIST

Jongmoon Baik, KAIST

CrossTalk—July/August 2011 7

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

TSP PSP Six Sigma Tools Purpose
Project
objective and
strategy

Planning
Correlation analysis,
Regression analysis

To estimate development
time of new program

Strategy
Team Goals
and Roles

Development Dotplot, pareto
analysis

To analyze the percentage
of defects by defect type

Overall Plan

PSP0

Postmortem
Correlation analysis,
Regression analysis

To estimate size and
development time of new
program

Quality Plan Plan
Job
Allocation
Plan

Planning
Correlation analysis,
Regression analysis

To estimate Added and
Modified value for new
program

Development

Multiple regression
analysis

To analyze Added, Reused,
Modified value distribution
of current
program and to estimate
LOC for new program

Risk
Assessment

Project Risk
Analysis

PSP0.1

Postmortem The same tools as in postmortem phase in PSP0

Report
Generation

Planning PROBE(PROxy-
Based Estimating)

To estimate new program
size and development time

Development The same tools as in development phase in PSP0

Review
Management
Review

PSP1

Postmortem

2-sample t-test

To determine whether
estimations has been
correct by comparing
between Plan Size/Hour
values and To Date
Size/Hour values

…

Postmortem
Launch
Postmortem

Process Charter
Process Evaluation
Sigma Calculator

Quantitative Project Management …

To estimate using
quantitative indicator

Since most of the PSP metrics and quality assurance activi-
ties are embedded in TSP, an adequate understanding of PSP
is necessary. Six Sigma provides PSP/TSP with various tools for
detecting special causes of variation, evaluating the impact of
process changes, and improving process performance at an or-
ganizational level. Figure 2 presents the relationships among the
“how to” techniques at an organization level. Using Six Sigma
tools, individual-level data gathered from developers, follow-
ing PSP0 through PSP3, is managed and analyzed. In addition,
based on the PSP data, which is transformed into TSP data at
a team level, TSP establishes a defined process foundation and
generates useful data that can be analyzed using Six Sigma
tools. The analysis results from Six Sigma provide methods for
analyzing collected data in PSP/TSP and leads to individual and
team level (further, organizational level) performance improve-
ment through effective decision making.

Six Sigma provides various statistical and non-statistical tools
in order to support effective decision making in the process of
developing software. Mapping Six Sigma tools to each PSP/
TSP process helps software engineers and managers under-
stand how to use Six Sigma analysis techniques in conjunction
with PSP/TSP data. Mapping the Six Sigma and PSP/TSP
process, shown in Table 1, describes the statistical analysis and
decision-making support tools of each PSP/TSP phase and
its purpose. Since PSP/TSP activities are performed in several
cycles, more Six Sigma tools can be applied in later cycles. The
main issues of the mapping between Six Sigma and TSP actu-
ally rely on information gathered from the PSP activities. In other
words, it is important to define what and how to extend the
individual data to the team level information. To do so, we have
defined several steps by tailoring the TSP launch process in [5]:
Strategy, plan, risk, assessment, review and postmortem.

An Integrated Framework for Six Sigma and PSP/TSP
Six Sigma and PSP/TSP Tools

We suggest frameworks and implemented relative tools of
Six Sigma and PSP/TSP, Six Sigma Project Management Tool
(SSPMT), JASMINE, and ALADDIN, respectively [11, 12].
SSPMT is a web-based Six Sigma project management sup-
porting tool that supports Define, Measure, Analyze, Improve,
and Control (DMAIC) and Design for Six Sigma methodologies.
Using the project initiation data and PSP/TSP data gathered
from JASMINE and ALADDIN, SSPMT performs each step of
DMAIC and provides analytic results. JASMINE and ALADDIN
are web-based PSP and TSP project supporting tools, respec-
tively. Since TSP mostly gathers information from the PSP
activity results, most of the process works are done by using
JASMINE. JASMINE collects an individual developer’s work
product information such as Source Lines of Code (SLOC), fault
counts, and so on. When a system is developed using Eclipse,
it provides plug-in that automatically collects bug occurrence
information per compiler. ALADDIN recollects the individual
level project data and categorizes it at the predefined team level
for further organizational decision making. Although the tools
interact with each other, since they use individual data reposito-
ries, they are not fully integrated from the management point of
view. Our intuition is that the decentralized database reduces the
capability of managing the output of each process and further

Figure 2: Integrating the “How to” technologies

Table 1: Mapping table of Six Sigma and PSP/TSP

quantifying decision-making variables or measurements.
As the PSP/TSP process continues, Six Sigma quantifies

the results of the processes by using various tools in order to
provide decision-making support. The detailed procedure of this
process, using the existing tools (SSPMT, JASMINE, and ALAD-
DIN), can be described as follows:

1.	 Initiate the PSP/TSP process using JASMINE
	 and ALADDIN.

2.	 Store the PSP/TSP data in the data repository of SSPMT.
3.	 Analyze the PSP data and report individual level process

	 performance improvement and decision-making issues
	 using the SSPMT.

4.	 Organize the PSP data into the predefined team in order 	
	 to support TSP data analysis.

8 CrossTalk—July/August 2011

Management Practices for Quality Products

5.	 Analyze the TSP data and report the team level process 	
	 performance improvement and decision-making issues 	
	 using the SSPMT.

6.	 Generate the results of both the individual and the team
	 level decision-making report.
7.	 Keep track of and provide feedback to the next cycle.

First, the PSP and TSP are performed by following their own
process using JASMINE and ALADDIN. Then, the overall data
is stored in the data repository, which is in the SSPMT database.
(We will discuss the repository in the next section in detail.)
ALADDIN collects the results, gathered from JASMINE, and
combines them in the form of teams that were predefined in
TSP team building in order to support team level decision mak-
ings and analyses. Finally, the SSPMT generates the decision-
making report according to the data and its analysis.

According to the procedures above and the mapping table
shown in the previous section, the suggested architecture sup-
ports not only PSP/TSP activities, but also their relative analysis
results and decision-making issues at an individual level and a
team level. In addition, the results of the statistical data analysis
help the project managers and software engineers to readily
make various decisions, for example, changing the management.
It is also easier to manage each process’s data concurrently by
integrating the data repositories.

However, since the tools use individually distributed data
repositories, the measurements, relative matrix, and results are
not managed concurrently and there is also needless storage
waste. For example, since most of the data analysis results of
the TSP are based on the PSP data, the TSP tool itself does
not need to be inputted again and/or the data restored. Thus,
it is better to directly store the necessary measurements and
minimize duplication.

Knowledge-based Data Repository
According to the facts stated above, the suggested architec-

ture is based on the integration of the database of the three
methodologies. Since it manages the overall data of each pro-
cess results by integrating the database, a more quantitative and
integrated process and project management can be provided.

In order to integrate the supporting tools of the three pro-
cesses, we provide a knowledge-based database. As shown
in Figure 4, the database architecture consists of three data
repositories as follows:

1.	 Master Data Repository:
	 Project Master Data: contains project initiation data, such 	

	 as baseline, team members, resources, schedule, 		
	 measurements, process mapping information, etc.

	 Process Master Data: contains setup information for Six 	
	 Sigma and PSP/TSP processes (e.g., DMAIC, DFSS of 	
	 Six Sigma).

2.	 Instance Data Repository: stores each process’s
	 empirical data (measurement) produced by each tool 	
	 (e.g., Six Sigma instance data, PSP/TSP instance data).

3.	 Analytic Data Repository: stores analytic results of 		
	 instance data using Six Sigma data analysis.

The master data repository, which contains project initia-
tion data and process setups, provides the basic information
of a project and its process to the instance data repository. For
example, the Six Sigma framework and team information can be
used in Six Sigma instance data and TSP data, such as process
ID and process name, and PSP data, such as individual member
information, PSP process ID, and name, can be used in TSP
instance data, and PSP instance data, respectively.

Based on the data collected, PSP activities are performed
and TSP extends the results to a team level using the team
member information and process ID. While PSP/TSP tools per-
form their process, Six Sigma instance data repository collects
the results in order to perform the data analysis that is used to
support decision making. Finally, the analytic results are stored
in the analytic data repository.

Data Management
In order to support the data repository framework, we imple-

mented a central data management application, QPC, MDC, and
PCM for managing and analyzing the metrics from the
PSP/TSP.

Figure 3: Data Repositories

Figure 4: Integrated framework for data management

CrossTalk—July/August 2011 9

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

Figure 5: An Integrated Process

Figure 6: Quantitative Project Controller

The register in the MDC, which is the central data manage-
ment application, receives the process and project master data
(e.g., project title, budget, schedule, and so on) from the manag-
ers. The distributer then distributes the information to each tool.

According to the data, JASMINE performs the PSP activi-
ties and ALADDIN combines the results at a team level and
performs the TSP activities. The SSPMT then analyzes the mea-
surements collected from the tools and provides decision-mak-
ing reports. During the Six Sigma analysis, the PCM continually
monitors the processes and feedbacks the analysis results to
the organization in the form of a report or e-mail. QPC transfers
the analysis data of the SSPMT to the analytic data repository,
and if required, to other data repositories.

Supporting Decision Making
An Integrated Process

In this section, we suggest a practical guideline showing how
the framework can be used by providing an example process of
the suggested framework. Figure 5 shows the overall process of
the suggested framework. The process can be categorized into
three layers: administrative, project, and organization.

First of all, the administrative layer works from the administra-
tor’s point of view. In this layer, the project manager registers the
project basic information and its process information and maps
the process and the project. As mentioned in the previous sub-
section, all the project initiation information can be registered
with the MDC. If a similar project exists, the project manager
revises it and uses a new project template.

In the project layer, PSP and TSP processes are performed
according to the predefined mapping information. As shown in
Figure 5, each project team member first performs his or her
individual role by following the PSP activities PSP0 through
PSP3. Then, they gather the individually performed outputs (e.g.,
SLOC, fault count) in order to extend it to the team level using
the TSP based on the team information and TSP process ID
gathered from the administrative layer. Data collected in this
layer is stored in the instance data repository.

In the organization layer, using the individual and team level
information gathered from the previous step, the Six Sigma
process is performed using appropriate tools based on the pre-
defined framework. Using statistical and non-statistical analysis,
Six Sigma provides analysis results at the project, individual,
team, and organizational levels. According to the results, the
SSPMT provides an analysis report that quantifies the overall re-
sults and enhances organizational decision making. By using the
PCM, project managers can also monitor whether each project
is going well. Finally, the feedback based on the overall results
and relative reports can be used to improve the whole develop-
ment lifecycle and further organizational improvement.

Quantitative Project Management
Based on the suggested integrated framework and processes,

we can collect individual (xpsp) and team (xtsp) data through the
PSP/TSP processes at the project layer. We can also elicit a set
of metrics (xtsp’) from individual (xpsp) and team (xtsp) data in the
TSP phase. The data is analyzed using Six Sigma tools at each
project layer and organization layer. Then, the Quantitative Man-

agement Indicator (QMI) absorbs the analyzed data (ytarget) and
determines if it satisfies the organizational goal. If so, the process
continues the same as at present. If not, individuals and the team
will receive feedback indicating what and where the problems
are. Then, the process will be changed or fixed according to the
issues and the process will be repeated with newly collected
metrics until the QMI confirms that the goal is satisfied.

Using the QMI, it is possible to directly relate the individual/
team level data and related metrics to the organizational goal.
Since it indicates the locations of the cause of the disconfirma-
tion, organizations can reduce the cost and change the schedule
of the process execution. As a result, by applying the QMI at
each PSP/TSP phase within Six Sigma’s quantitative measure-
ments, organizations can deliver their products with the desired
quality, which will lead to customer satisfaction.

Conclusion

This article focused on supporting quantitative decision mak-
ing for process performance during software development proj-
ects. It is proposed to seamlessly integrate Six Sigma and PSP/
TSP tools using a knowledge database. Thus, an organization
can continuously improve its process based on empirical and
analytic data and move to a higher CMMI level. In the future, we
expect to develop more accurate metrics for quantitative project
management of each domain and project guidance.

10 CrossTalk—July/August 2011

Management Practices for Quality Products

Acknowledgements
This research was supported by The Ministry of Knowl-

edge Economy, Korea, under the ITRC(Information Technol-
ogy Research Center) support program supervised by the
NIPA(National IT Industry Promotion Agency). (NIPA-2009-
(C1090-0902-0032))

Disclaimer
®CMMI and ®CMM are registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.
SMPSP and SMTSP are service marks of Carnegie Mellon University.

Sejun Kim is an Engineer at BISTel, Seoul, Korea.
Kim earned a master’s degree in computer science at
the Korea Advanced Institute of Science and Technol-
ogy (KAIST) and a bachelor’s degree in computer
science at Kwangwoon University. Kim was involved
in the Software Process Improvement Center project
and has developed the SSPMT, CMMI-Six Sigma
Guideline, and Reliability-Six Sigma Guideline. His
research interests are software process and qual-
ity improvement, especially focused on Software Six
Sigma and Software Testing.

KAIST
335 Gwahak-ro (373-1 Guseong-dong), Yuseong-
gu, Daejeon 305-701, Republic of Korea
Phone: +82-42-350-3356
E-mail: sejunkim@kaist.ac.kr

Okjoo Choi is a research assistant professor at the
department of computer science at KAIST. Choi earned
a bachelor’s degree, a master’s, and Ph.D. in computer
science from Sookmyung Women’s University, Seoul,
Korea. Before she joined KAIST, she had worked at ERP
consulting services, Oracle Korea Ltd. as a consult-
ing technical manager from 1996 to 2009 and LG
Electronics Production Engineering Research Center an
assistant research engineer from 1990 to 1996. She is
currently involved in projects related to software reliability
for embedded weapon systems.

KAIST
335 Gwahak-ro (373-1 Guseong-dong), Yuseong-
gu, Daejeon 305-701, Republic of Korea
Phone: +82-42-350-3356
E-mail: okjoo.choi@kaist.ac.kr

Jongmoon Baik is an associate professor at the
department of computer science at KAIST. Baik
earned a bachelor’s degree in computer science and
statistics from Chosun University and a Master’s and
Ph.D. degree in computer science from University of
Southern California. Before he joined KAIST, he was a
principal research scientist at Software and Systems
Engineering Research Laboratory, Motorola Labs from
2001 to 2005. He is also an adjunct faculty member
for the Masters of Software Engineering program at
Carnegie Mellon University.

KAIST
335 Gwahak-ro (373-1 Guseong-dong), Yuseong-
gu, Daejeon 305-701, Republic of Korea
Phone: +82-42-350-3356
E-mail: jbaik@kaist.ac.kr

ABOUT THE AUTHORS

1.	 Mark C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber, “Capability Maturity Model 	
	 for Software, Version 1.1”, Technical Report CMU/SEI-93-TR-024, ESC-TR-93-177, 	
	 Feb, 1993.
2.	 CMMI, “Capability Maturity Model Integration” Software Engineering Institute,
	 CMU, 2002.
3.	 CMMI Made Practical, “Implementing CMMI for High-Performance”, London,
	 April, 2009.
4.	 Watts S. Humphrey, “The Personal Software Process”, Technical Report, CMU/	
	 SEI-2000-TR-022, ESC-TR-2000-022, Nov, 2000.
5.	 Watts S. Humphrey, “The Team Software Process”, Technical Report, CMU/SEI-	
	 2000-TR-023, ESC-TR-2000-023, Nov, 2000.
6.	 Thomas Pyzdek, “The Six Sigma Handbook: The Complete Guide for Greenbelts,
	 Blackbelts, and Managers at All Levels, Revised and Expanded Edition,
	 McGraw-Hill, 2003.
7.	 <http://www.processdash.com/>
8.	 Johnson, Philip M.,”Project Hackystat: Accelerating adoption of empirically guided
	 software development through non-disruptive, developer-centric, in-process data
	 collection and analysis”, Technical Report csdl2-01-13, Department of Information
	 and Computer Sciences, University of Hawaii, Honolulu, Hawaii 96822, November 2001
9.	 <http://code.google.com/p/hackystat/>
10.	R. Sison, et al, “Personal Software Process (PSP) Assistant”, In Proceedings of the 	
	 12th Asia-Pacific Software Engineering Conference (APSEC’05)
11.	Y. Park, H. Park, H. Choi, and J. Baik, “A Study on the Application of Six Sigma 	
	 Tools to PSP/TSP for Process Improvement”, In Proceedings of the 5th IEEE/ACIS
	 International Conference on Computer and Information Science and 1st IEEE/ACIS
	 International Workshop on Component-Based Software Engineering, Software
	 Architecture and Reuse (ICIS-COMSAR’06).
12.	P. Zedan, H. Park, and J. Baik, “A Six Sigma Framework for Software Process
	 Improvements and Its Implementation”, In Proceedings of APSEC 2007, Dec 5-7, 2007.

REFERENCES

mailto:sejunkim@kaist.ac.kr
mailto:okjoo.choi@kaist.ac.kr
mailto:jbaik@kaist.ac.kr
http://www.processdash.com/
http://code.google.com/p/hackystat/

CrossTalk—July/August 2011 11

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

“Technical problems we can solve; social challenges are much
harder.” These words of wisdom stated by our Project Manager
Battle Command (PM BC) Technical Manager have proven true
many times over. The core meaning of this statement is that en-
gineers tend to focus on innovative methods and best practices
as a means to increase productivity, reduce defects, increase
cycle time, et. al. The most critical processes and methods to
success really involve unifying and sustaining a productive
social component – a good team with clarity of mission, unity of
purpose, and organized to clear objectives.

David M. Moore, COL, U.S. Army, Project Manager Battle Command

Portia Crowe, U.S. Army, Chief Engineer PM BC-Strategic 		
	
Robert Cloutier, Ph.D., Stevens Institute of Technology

Abstract: Successful system of systems interoperability includes a disciplined
and responsive system engineering process that focuses on both near-term
deliveries to new and current software baselines and longer-term development
that sets conditions for enhanced warfighter effectiveness. The foundation of this
success relies on flexible and rapid development methodologies and the creation
and sustainment of a collaborative social environment by which various communi-
ties unify to provide capabilities in a common framework. In the context of new
strategy development, the intent of this article is to describe the challenges of
implementing an innovative and collaborative environment in the context of scal-
ing an agile system engineering method to a large combined effort.

The backdrop for what has become more of a social endeavor
than a technical shift is the Battle Command (BC) “collapse”
strategy. The Army has been developing unique and essentially
stove-piped digital command and control solutions for many
years. Nearly every specific staff function (artillery, air defense,
aviation, etc.) has built a unique system for its sole purpose.
While it must be noted that Army doctrine drove this design, the
sum effect is that our unit commanders and staff are separated
by their information systems. The collapse strategy implements
a material design approach that brings the Army’s family of
uniquely distinct tactical functional applications with unique data
storing and sharing mechanisms and collapses these systems
towards a consolidated software product line. The desired ben-
efits of the collapse strategy beyond the operational warfighter
value included reduction in software development and hardware
procurement costs.

To launch a strategy about a core product, the BC leader-
ship first had to create conditions for unified effort as well as
establish overarching system engineering processes to control
progress and gain irreversible momentum. Irreversible momen-
tum is achieved by establishing annual build plans and driving
immediate redirection of effort towards these near term goals.
Overarching system engineering processes at the PM BC level
had to be established in parallel to subordinate project plan
adjustments. As part of the BC effort, agile methodologies were
adopted and built into the broader organizational culture.

A Shared Innovator’s Environment
An aggressive rapid approach is a key measure of keeping

our capability relevant with deployed warfighters. One barrier
to innovation is a program having centralized control over the
development environment. Innovation is more broadly adopted
when all can participate with a degree of independence and rec-
ognition of shared value by unity of effort.

The main effort of the BC strategy was to build on the most
promising software framework within the BC portfolio. This
strategy achieved immediate gains but also advanced a limita-
tion that this architecture was proprietary. To mitigate this limita-
tion, PM BC negotiated for government purpose rights (GPR)
within the next year. This allowed all developers to maintain
the BC software framework. This approach also created the
most internal social friction and demanded very deliberate and
significant system engineering. Subordinate Project Managers
(PMs) and their contractors who needed to shift to this new
architecture needed significant training. PM BC continues to
mediate between contractors to maintain as much momentum
as possible and to keep on the annual build schedules. In time
and with the release of GPR, the social friction associated with
this course of action should diminish but success has demanded
significant leader interaction to maintain support and keep the
system engineering process on track.

Similar to each subordinate PM maintaining a thick client
system, each PM was also developing unique web service
frameworks and a unique presentation layer. To unify this unac-
ceptable condition, the PM chose a new product development

Driving
Major
Change
The Balance Between
Methods and People

12 CrossTalk—July/August 2011

Management Practices for Quality Products

effort and built a common web service environment usable at
the tactical level that extended the commander’s collabora-
tive reach to anyone with a computer and browser (“BC Web”).
Select functions are targeted for this environment with the goal
of eventually building collaborative capability in a web service
environment. To maximize the ability to team with a broad range
of development partners, PM BC chose a government open
source framework that already had momentum in the Intel-
ligence domain. This choice reinforced unified effort within the
Army and created the conditions for any command to build with
a program of record in a collaborative development environment.

With the intent to collapse disparate BC thin client systems,
a third-party environment became necessary to allow other de-
velopers to create, or re-create, their capabilities using a set of
standard tools and guidelines in a common framework. The BC
Web thin client team stood up an environment that includes a
third-party software development kit, third-party widget test and
development area using Defense Information Systems Agency
(DISA) Rapid Access Computing Environment, authorization and
authentication, widget security checklist, and widget and training
style guides that collectively provide an integrated secure single
environment from development to deployment. The team was
able to completely stand up this environment within six months
in accordance with the Army CIO/G6 guidance and policies for
a common operating environment [1]. One of the main efficien-
cies of using a common operating environment is that Battle
Command, Distributed Common Ground Systems-Army, and
now the DISA Joint Command and Control initiative will provide
a common core framework and capabilities for broad applicabil-
ity for enterprise and tactical users, and will allow for optimal
sharing of information, infrastructure, and development costs
using the Ozone Widget Framework.

Through innovation and placing value on a new product, we
are trying to motivate users and developers to create, share, and
enhance capabilities and allow for efficiencies in products, services,
and processes at a monumental pace, getting users what they
need. Through these efforts, our users are seeing similar function-
ality to common web features (i.e., social networking, mapping fea-
tures, app store concept). An aggressive strategy, modern technolo-
gies, and warfighter needs have imposed a new business model
that requires an innovative environment that allows for growth, rapid
development and lean testing, integration, and deployment of ca-
pabilities. Chris Jones, a widget developer, states, “As a developer,
the use of the standard set of tools increases productivity, enables
rapid development and deployment of capabilities, and ensures that
I maintain the rigors of software governance, test, and validation
provided within the environment of BC Web.”

Methodology Used
The traditional acquisition process used to develop military tech-

nology is not aligned with the speed, agility, and adaptability of new IT
capabilities in today’s information age [2]. To provide speed of delivery
of capabilities to warfighters, we choose to implement an Agile Sys-
tems Engineering (ASE) approach that encompasses agile principles

Table 1: Future Trends in Systems Engineering

	
The BC team understands the challenges of an agile ap-

proach from historical knowledge and use in other programs.
However, we needed to expand this knowledge to introduce
concepts and process to traditional thinkers to invoke the broad-
er community effort. A traditional development approach starts
with a defined system with specific functionality as opposed to
an ASE approach where adaptive and emergent requirements
and system capabilities can be undefined in the beginning and
later evolve. Although agile software development is the most
popular agile discipline, we needed agility across the spectrum
of the program’s lifecycle in a rapid and flexible manner. We
incorporated ASE as a lightweight loop-back process with short
and rapid cycles with priority of requirements and close user and
stakeholder collaboration.

ASE offered us a way to incorporate other functions into our
30-day sprint cycle. Within one month, the 20-person contract
and government team created enough momentum to demon-
strate capabilities at a BC scrum (user and developer integration
and feedback) event which included user stories and plans for
refinement of capabilities.

Requirements from a much larger community were prioritized
and the team was able to complete about 10-15 requirements
a sprint. We also worked with the open Ozone community on re-
quirements, standards, and governance. Risks were continuously
monitored on a weekly basis during integrated product team
meetings. Through these activities, we were able to invoke dis-
cipline in our agile processes. Testing and integration were con-
tinuously performed on each 30-day sprint build. Through the
agile methodology, we had a process that started the security

Future Trends in Systems Engineering

Platform to enterprise (customer emphasis)

Dominant prime to strategic teaming (Execution internal & external)

Compressed delivery schedules

Increased reliance on systems engineering for unknown space

Improvements in collaboration

Increased number of complex systems, emergence and rapid change

Increased customer requests for system engineering support earlier in life cycle

Increased emphasis on users and end value

Understanding of what is attainable

	

	

	

as well as brings agility to the entire lifecycle process. Parallel efforts
of development, testing and integration with short iterations while
stacking priorities are part of the agility structure implemented. The
beneficial impact of agile systems engineering is to work smarter and
provide immediate benefit and value to the users. It is a highly col-
laborative method that needs the stakeholders to work together to be
successful. The agile systems engineering method values customer
interaction and collaboration over process [3].

CrossTalk—July/August 2011 13

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

accreditation process early as it is usually the longest lead time.
The concurrent planning and execution of security accreditation
and training modules earlier than traditional waterfall processes
allowed us to provide the system to a beta unit for feedback
much earlier than anticipated. A success to rapid widget devel-
opment in the BC Web environment was a Communications-
Electronics Research, Development, and Engineering Center
research and development social networking capability that was
ready for deployment for the beta unit test. The rapid develop-
ment of widgets from third-party developers into a common
marketplace with no middle integrator enables development of
capabilities at a much faster pace with the efficiencies of using
common tools. That environment is of high value to our users.

Challenges and Lessons Learned
Creating strategy is nowhere near as hard as implement-

ing strategy. Engineering teams tend to focus on controlling
processes, schedule, and risk. The value of a new strategy is
only self evident to the creator. All others must be lead along the
journey. Leaders and key staff must be given the means to see
the vision and work towards a common objective. Solid system
engineering processes and scaling up agile methodologies is
hard work. Leaders who undertake strategy development must
be confident that key leaders and staff who are essential to suc-
cess will pick up the pace and deliver results that lead subordi-
nates through ambiguous and challenging times.

Judicious selection of software architecture and framework
are crucial choices to launch a project with momentum. This
paper identifies two key elements of a strategy with two distinct
start points. One leveraged a proprietary solution with near-term
promise of opening the framework up while the other began
open. The more open and ubiquitous an architecture is, the bet-
ter. The more closed, the greater the challenge to success.

Battle Command’s adoption of scrum sessions as a broad
means to unify users and developers on common visualiza-
tions was essential. Scrum sessions gave a means for project
managers and developers to visualize how their traditionally
stove-piped software would work in the new environments.
Developers were able to derive accurate requirements as a
result of scrum sessions. An interesting side effect of scrum
sessions was accelerated software development. By putting
users and software developers together, management was
sidelined. Visible angst existed as both government and com-
mercial managers lost an element of control as these groups
became excited and began to turn iterations very quickly.
Getting the middleman out of the way at certain times has
its benefits.

This is a people business. When change is implemented,
people assess their posture against this change and will judge
themselves a winner or a loser. They will get on board, actively
or passively fight change, or seek a means to ride the fence,
ready to shift from side to side depending on their own assess-
ment of probability of success. Dedicated leadership at many
levels is needed to overcome these dynamics. Top leaders must

engage not only immediate leaders but also engineers and
managers at all levels. Leaders must personally communicate
the strategy, the plan, and seek feedback at every level. Sitting
in the office and publishing implementing e-mails will not lead to
long-term success.

At the right time, the leader must get tough. When a risk
assessment warrants it, a leader must dive as deep as he
can stand to draw out barriers to success. Very often these
investigations will not only give technical insight into barriers
to success but will also reveal subordinate interactions be-
tween government and contractors that may be barriers
to success.

Do not jump to adverse social conclusions. Implementing ma-
jor change is hard. It may be easy at some point to label a key
leader or engineer a non-supporter and then seek methods to
minimize their adverse impact. In reality, these people are most
likely struggling to fit their skills and personality into the new
strategy. A personnel change may be warranted if unaccept-
able risk persists, but this does not mean the person in charge
was seeking to undermine the strategy. A leader should seek to
align subordinates to their strengths if a change in strategy has
marginalized an individual’s value.

Nothing beats personal presence. It is a leader’s responsibility
to put himself in front of his subordinates when he implements
change. The leader must be available to take private and public
shots from his subordinates. A leader must get out, explain, and
internalize how people are feeling about change. The real issues
will never come in the leader’s office, but brew in the cubicles
of subordinates and contractors affected by change. Subordi-
nates may not like what the leader is doing but they will always
respect genuine personal engagement.

Innovation is emergent and dynamic and BC realized that
it is typically a bottom-up approach in which people involve-
ment is critical. We realized that to gain stakeholder buy-in,
the team thrived off of empowerment and involvement in the
methodology and process. To overcome cultural challenges,
we worked with leadership for buy-in of the agile process that
lead to stakeholder ownership of the process and encouraged
every member of the team to participate in sprint reviews and
creation of the environment. Through this process, we found
innovation came naturally and was accepted more openly. The
rapid and aggressive approach also brought a higher number
of risks than a traditional process, so we had to adjust our
tolerance for acceptance and balance it with value to our us-
ers. As more developers enter this space with unique require-
ments, this becomes more complex. Lessons learned also
included setting expectations up front for all participants. For
example, to minimize costs, the team was asked to maintain a
lean attitude up front so that, collectively, we would ensure all
IT dollars would provide value. We also found that culture plays
a much larger role than technology and can significantly hinder
or provide momentum to organizational efficiency and effec-
tiveness. We found that common beliefs and shared logic was
very important for success.

14 CrossTalk—July/August 2011

Management Practices for Quality Products

REFERENCES

Conclusion
The BC collapse strategy is driving significant positive strides

that will increase commander and staff operational effective-
ness. The strategy’s focus on robust, collaborative solutions
places Army software development on a path to successfully
supporting the warfighter in highly variable and uncertain op-
erational environments. By breaking down system designs that
have stove-piped the Army’s warfighting functions, employing a
human-centered collaborative approach has proven to support
the way the commander and staff desire to interact. The condi-
tion PM BC seeks to create is one where the strengths of its
vendors are not marginalized because of governmental barri-
ers to effective collaboration and open competition. Adopting
a commercial competitive model, characterized by rapid cycle
times that quickly deliver innovation to the field, is how PM BC
programs will remain relevant to the warfighter.

Technical problems can be solved; social problems are much
tougher. With any change, new processes must be built or modi-
fied and then reinforced. Beneath repeatable system engineer-
ing processes and agile methodologies are people. Strategy
and its supporting development processes begin and end with
people. A leader must ensure his team is well trained, given a
clear mission and objectives, and are resourced to execute. The
BC software development mission goes one step further as our
systems are used in combat. A leader will visibly display this
emotional commitment to the warfighter and seek to gener-
ate and sustain this commitment in the organization. In Battle
Command, this has not been difficult. The unique challenge
is convincing the organization that by supporting change, the
warfighter will be more lethal and survivable. Software is much
about method but in the end, it is mostly about people. People
drive success or failure in any organization. Active leadership at
all levels drive this success.

COL David Moore assumed command as the PM BC in
August 2007. PM BC develops and sustains Army and Joint
software command and control capabilities from tactical to
strategic levels. The scope of PM BC includes the lifecycle
management of software products that include Command
Post of the Future, Advanced Field Artillery Data Systems,
Global Command and Control System – Army, Battle Com-
mand Sustainment and Support System, and a common
software effort. PM BC also serves as the Army’s Component
Program Management Office for Joint Command and Control
as well as manages the Army’s Common Hardware Systems
procurement effort. COL Moore’s previous acquisition assign-
ments have focused on warfighting solutions for combat ve-
hicle, soldier equipment, and software command and control
systems for the joint force and coalition partners.

PEO C3T PM Battle Command
ATTN: SFAE-C3T-BC
6007 Combat Drive, 5th Floor
APG, MD 21005-1846
E-mail: PAOPEOC3T@conus.army.mil

Portia Crowe is the chief engineer and technical direc-
tor for the Army, Program Executive Office C3T-PM Battle
Command-Strategic. Crowe is a Ph.D. candidate at Stevens
Institute of Technology, Hoboken, NJ and currently conduct-
ing research in agile systems engineering. She has received
numerous Army awards for successful implementation and
fielding of strategic programs, and for various research and
development projects. Crowe has experience in systems
and software engineering and tactical and strategic pro-
gram lifecycle management.

PEO C3T PM Battle Command
ATTN: SFAE-C3T-BC-TMD
6007 Combat Drive, 5th Floor
APG, MD 21005-1846
E-mail: PAOPEOC3T@conus.army.mil

Robert Cloutier, Ph.D. is an associate professor of sys-
tems engineering in the School of Systems and Enterprises
at Stevens Institute of Technology. Cloutier has more than
20 years experience in systems engineering and architect-
ing, software engineering, and project management in both
commercial and defense industries. Industry roles include
lead avionics engineer, chief enterprise architect, lead
software engineer, and system architect on a number of
efforts and proposals. Cloutier’s research interests include
model-based systems engineering and systems architecting
using Unified and Systems Modeling Languages, reference
architectures, systems engineering patterns, and architec-
ture management. Cloutier has a bachelor’s degree from
the U.S. Naval Academy, an MBA from Eastern College,
and a doctorate in systems engineering from the Stevens
Institute of Technology.

School of Systems and Enterprises
Stevens Institute of Technology
Hoboken, NJ 07030
Phone: (201) 216-5378
E-mail: robert.cloutier@stevens.edu

ABOUT THE AUTHORS

1.	 US Army CIO G6. Common Operating Environment Architecture. October 2010.
	 <http://ciog6.army.mil/LinkClick.aspx?fileticket=udbujAHXmK0%3D&tabid=79>.
2.	 Report to Congress. A New Approach for Delivering Information Technology
	 Capabilities in the Department of Defense. Office of the Secretary of Defense.
	 November 2010.
3.	 Turner, Richard. Toward Agile Systems Engineering Processes. CrossTalk, April 2007.

mailto:PAOPEOC3T@conus.army.mil
mailto:PAOPEOC3T@conus.army.mil
mailto:robert.cloutier@stevens.edu
http://ciog6.army.mil/LinkClick.aspx?fileticket=udbujAHXmK0%3D&tabid=79

CrossTalk—July/August 2011 15

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

Introduction
The most successful projects are those that have a solid

foundation and actively supportive sponsors. However, the initia-
tion phase can be challenging because of the number of details
that must be defined to ensure project success.

One key issue that must be addressed during project initiation
is the identification of the “right” project sponsor; one who has
enough political clout and backing to overcome the obstacles
that arise in the lifecycle of any project. In large and complex
organizations, this task can be overwhelming because the orga-
nization hierarchy is often dispersed geographically encompass-
ing multiple time zones on multiple continents.

 Identifying the right project sponsor is a critical step, but is
difficult to accomplish. Reliance on the organizational hierarchy
to identify individuals is one way, but is not always optimal.
 To understand “true” power, it is important to understand what
power is and how it manifests itself within an organization. Ac-
cording to the classic publication by French and Raven [1],
there are five main types of power: legitimate, referent, expert,
coercive, and reward.

Power and
Influence
Charting

Abstract: The success or failure of a project may be charted in the initiation
phase. Therefore, initiation is arguably the most important phase of any project.
During the initiation phase, the foundation for the project is established, including
the selection of project sponsors and champions and getting their buy-in, which
sets the project up for success.

Legitimate Power:

Power that is inherent to a role within the organization and
not the person occupying the role.
Referent Power:

Power that comes from being liked and respected by those
around you. This power is based on the fact that individuals are
striving to be like you and follow your lead. It is inherent to the
individual and not the role.
Expert Power:

Power that comes from others needing what you know and
what you can do. It is inherent to the individual and not the role.
Coercive Power:

Power that is derived from forcing others to do that which is
contrary to their own will through coercive means. This power
could be based on punishment or through forceful means. Abil-
ity to execute this type of power could be based in a role or be
an attribute of the individual.
Reward Power:

Power that is derived from coaxing others to do your will
through promise of reward. This reward could be tangible or
intangible, but the promise of a reward upon completion of the
activities or set of activities is the basis for the power. Ability to
execute this type of power could be based in a role or be an
attribute of the individual.

In determining where this power exists within the organiza-
tion, the organization hierarchy does a great job of modeling out
legitimate power; however, it does not clearly identify individuals
with either referent or expert power. In some circumstances,
these individuals can have greater influence within the organiza-
tion than those with legitimate power. Therefore, it is crucial to
identify individuals with referent or expert power when deter-
mining optimal project sponsorship during the project initiation
phase. Modeling expert and referent power is more challenging
than modeling legitimate power, but the results are invaluable to
understanding the true picture of organizational power.

To get a glimpse into how mapping the organization’s power
structure can occur, we can look into the history of how Google
rose from an idea dreamed up in the dormitory of two grad
students to one of the world’s largest and most formidable
companies in less than 10 years and merge that with a concept
from one of the leaders in business research and analysis.

Google
In the late 1990s, there were a handful of major search en-

gines fighting to gain market share in the search market. AltaVis-
ta, Excite, Yahoo, and several others had established themselves
as internet search leaders. Indexing the World Wide Web was
accomplished through a limited number of standard approaches.

The first method was to “crawl” the internet and identify all web
pages that were linked together. Once a web page was found,
the page content was used to rank how applicable it was to
the search term the user submitted. This process was relatively
simple and allowed users to find pages they were looking for. The
dilemma was that just because the pages contained the search
term, did not necessarily mean the intended needs of the user’s

Sharon Berrett, Idaho National Laboratory

Troy Hiltbrand, Idaho National Laboratory

The Google Way

16 CrossTalk—July/August 2011

Management Practices for Quality Products

search were met. The other problem was that this approach al-
lowed marketers to load a page with superfluous search terms to
drive their web page higher in the ranking, even when there was
no direct linkage between the search term and the web page.

To augment this type of indexing, these search engines also
created human-managed indexes. Human reviewers would take
the most sought after terms and put them into a hierarchy that
could be easily searched. As they reviewed pages found in the
web crawl, they were manually categorized and ranked with
relative priority to other pages in that category. The outcome of
these people-generated results were highly acceptable because
they targeted returning content that people wanted to see and
not just content that matched the search terms. It was limited
by the fact that it was not highly scalable. With millions of pages
having constantly changing content on the Internet, it was
impossible for a person, or even a team of thousands of people,
to track these pages.

This is where Google revolutionized the search industry.
Although implementation was fairly complex, the concept behind
Google’s idea was simple. They identified that the only way to
have a usable, maintainable index was to develop a way to gener-
ate meaningful search results without human intervention. Google
envisioned an algorithm to automate the process of page catego-
rization and ranking that would not rely on an individual constantly
reviewing pages to keep them fresh and up to date [2].

 The basic premise of this methodology was to rely not only
on the content within the page, but to consider what other sites
were linked to that page, the relative importance of those sites,
and how many other pages that site was linked to. With the
combination of these factors, Google was able to achieve mean-
ingful results that were scalable as the Web grew. This process
has been commonly referred to by Google as PageRank.

Google’s definition of PageRank [3] states, “PageRank re-
flects our view of the importance of Web pages by considering
more than 500 million variables and 2 billion terms. Pages that
we believe are important pages receive a higher PageRank and
are more likely to appear at the top of the search results. Pag-
eRank also considers the importance of each page that casts a
vote, as votes from some pages are considered to have greater
value, thus giving the linked page greater value. We have always
taken a pragmatic approach to help improve search quality and
create useful products, and our technology uses the collective
intelligence of the Web to determine a page’s importance.”

One of the concepts Google has strived to continually main-
tain is to avoid manual intervention in the search algorithm. If
issues were found in the ranking of a page, the algorithm was
evaluated to identify how it could be optimized to rank that page.
Google’s purist philosophy has been challenging to maintain, but
has also garnered trust from the user community. This confi-
dence allows users to feel like they are getting the best results
available and not the results that are best for the highest bidder.

The same innovation that propelled Google from obscurity to
the top of the search industry can be applied to organizations
to identify individuals who have referent and expert power, but
don’t necessarily show up at the top of the organizational chart.
This ensures that all vital project stakeholders are identified in a
quantifiable method.

Gartner Power Mapping
Gartner, a highly respected thought leader in the business

research and analysis sector, has identified and published
a method similar in nature to the early search engines. This
method relies on knowledge of key individuals to evaluate and
derive measures for an individual’s power and influence in the
organization. This method is called “power mapping” [4].

Power mapping is focused on smaller sized groups and its
purpose is to identify which stakeholders have the most power
and influence within that group. To accomplish this, the evalua-
tor lists all stakeholders who are potential influencers. Then, the
evaluator establishes categories with highest importance to the
organization in terms of what power looks like in the areas of le-
gitimate, expert, and referent (referred to as position, knowledge,
and relationships by Gartner). Each individual is then evaluated
on a numeric scale and the scores are added up to ascertain
the overall power of each individual. The results are then vetted
out through a series of interviews to ensure assumptions made
in the scoring are correct. The final score represents the overall
power and influence of an individual within the organization.

Table 1: Gartner Power Mapping

 Total Position Knowledge Relationships

Stakeholder 1 6 3 1 2

Stakeholder 2 5 3 1 1

Stakeholder 3 7 2 3 2

Stakeholder 4 6 1 2 3

	

Like the early search engines, this process is extremely
effective because it relies on human understanding of power
throughout the organization and includes a validation process to
ensure who key stakeholders are and their relative power and
influence within the organization.

The manual nature of developing the power map in this
fashion is very time consuming and requires institutional tacit
knowledge, and changes in the organizational power base do
not surface quickly. Consequently, manual development of a
power map is neither scalable nor highly maintainable over
the long term.

Gartner Meets Google
Here is where the concept that Google used to revolutionize

the search industry can take the power map to a whole new
level of scalability, maintainability, and adaptability. If the process
can be automated and an algorithm developed to measure the
influence and power of all individuals within an organization,
then it can be scaled and updated regularly to capture power
changes in the organization. In addition, the automated power
and influence chart would be impervious to the need for an
organizational expert’s participation in the creation and mainte-
nance of the chart, making it more resilient from a knowledge
transfer perspective.

CrossTalk—July/August 2011 17

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

We used this concept at Idaho National Laboratory (INL) in an
effort to automate the power and influence charting process and
to identify the influence base within the organization. This ap-
proach allows the identification of key strategic partners through-
out the laboratory who could be engaged to champion project
efforts that align strategically with achieving key mission goals.

Background
In operation since 1949, INL is the Department of Energy’s

(DOE) lead nuclear laboratory and is dedicated to supporting
DOE’s missions in nuclear energy research, energy and environ-
ment, and national and homeland security. INL is operated by
Battelle Energy Alliance and participates both independently
and jointly with other labs in the support of work for DOE and
other government agencies.

Process

The main process for mapping power in the organization fol-
lows these steps:

1.	 Identify intelligence sources
2.	 Map intelligence in categories of power
3.	 Gather data
4.	 Normalize data
5.	 Weight categories of influence and power
6.	 Summarize individual influences and power
7.	 Categorize individuals

Our first task was to identify which organizational artifacts would
serve as intelligence sources. Key information was not available in a
single consolidated system, but across the organization in the form
of both structured and unstructured data. Structured data is where
each data element is defined and it is possible to identify relation-
ship between the elements, whereas unstructured data is in free
form without definition or relationships.

Data had to be mined and consolidated and then classified into
the areas of legitimate, expert and referent power. Often a single in-
telligence source was used to identify more than one type of power
depending on the information extracted from it. Once this data
underwent a process of classification and weighting, the relative in-
fluence that each individual has within the organization was derived
and individuals were categorized making the information actionable.

Legitimate
Legitimate power was the easiest to measure. To evaluate le-

gitimate power within an organization, we were most concerned
with the span of control for that individual. Span of control
addresses how many people each individual manages and who
those individuals are. When identifying span of control, both di-
rect manager-employee relationships as well as matrix manag-
er-employee relationships were assessed. Within INL, there are
two additional organizations that reflect legitimate power outside
of the organization hierarchy. Councils represent the oversight
of investment and management systems represent oversight of
processes. Different roles within these two organizations were
assessed to identify an individual’s legitimate power.

Expert
With expert power, we looked at accomplishments of indi-

viduals across the organization. To identify notable individuals,
the first area we examined to identify expert power was INL’s
internal communication system. The centralized communication
system allows for notes to be distributed across the organiza-
tion. These notes communicate promotions, accomplishments,
upcoming meetings, areas of research, or any significant
information to managers and/or employees. We gave credit to
each of the individuals mentioned in communications, weighting
newer communications higher than the older communications.

The second area we examined to identify expert power was
key strategic projects within the laboratory. These are areas of
high interest to DOE and are critical for accomplishment during
the fiscal year. Each key strategic project has multiple people
acting in different roles. Each of these different roles within the
strategic project was given a weight as to the influence exerted
over its successful completion.

Referent
Referent power deals with connections within the organiza-

tion and was the most challenging to identify. Similar to the
method used by Google to rank pages, organizational connec-
tions are where whom an individual knows is more important
that what the individual knows.

To accomplish this evaluation, we looked at a number of
existing intelligence sources used in deriving legitimate and
expert power to identify the referent power. When individuals are
related within these intelligence sources, it is an indication of an
organizational association between these individuals. The more
associations that an individual has represents the higher the
likelihood that the individual has referent power in the organiza-
tion. Referent power is much more than who is friends in the
organization, it establishes which individuals have influence
over others to make things happen. To assess this, we looked
at relationships among individuals on the councils, key strategic
projects, and management systems.

Figure 2: Intelligence Sources

18 CrossTalk—July/August 2011

Management Practices for Quality Products

Normalization
Since each of these factors generates results of differ-

ent quantitative magnitudes, they must be normalized so that
they can be combined. The goal in normalization was to take
data sets with different domains and allow them to be added.
Span of control might have values from 1-30, communication
notes might have values from 1-5, and connections might have
1-1000. Just adding these numbers together would skew cer-
tain categories much too high in the evaluation of power.

Using some basic statistics, each number can be represented
as the number of standard deviations from the mean (or the z
score), putting a majority (99.9%) of the data within a normal-
ized range and allowing it to be combined.

Figure 3: Referent Power Connections

Figure 4: Normal Bell-shaped Curve

Equation 1:

Not all data sets involved in the calculation are distributed
normally and fit the standard bell shaped curve. In addition, there
are often outliers in the data that have to be evaluated and
addressed. In the case that data is skewed away from nor-
malcy, other more advanced statistical methods are required to
increase the relevancy of the overall power score.

We then evaluated each of the categories to identify which
had the highest impact on the power for the individual. Each
category was given a numeric multiplier to indicate its overall
importance to the power base of the individual. These weights
were then applied to each category’s score and all of the scores
were summed up to get a final power score.

Along with the identification of sources and calculation of
factors, weighting of the categories is one of the most impor-
tant aspects of this process. With multiple sources and factors
participating in the overall score, a refinement of these weights
is necessary to ensure result validity. To perform this refinement,
the process is run iteratively, generating sets of results that
can then be evaluated by knowledgeable individuals within the
organization. Once their feedback is gathered as to the accuracy
of the power scores, analysis is done to determine reasoning
behind both false positives and false negatives and both the
weights and distribution-based calculations are refined to more
accurately represent the nature of power in the organization.

This power factor describes the relative level of influence and
power an individual has in the organization. Since connections
within the organization are reliant not only on how many connec-
tions an individual has, but also the relative influence score that
those connections have, it is important to run the calculations
through a number of times. The first time, all individuals in the
organization have an equivalent influence factor. Each succes-
sive time that the calculation runs, the new power factors are
used and the relative power factor exerted on the connection
get closer to representing the truth. Each successive time the
calculations are done, the influence factor changes some, but as
it is done multiple times, that change gets smaller and smaller
until it approaches zero. This gives us the most accurate repre-
sentation of an individual’s power score within the organization.

Categorization
This power score is a relative representation of the influence

of the individual in the organization, but unless there is assur-
ance that all intelligence sources were utilized and the weights
are accurate, it can be misrepresentative of the exact influence
of an individual. To simplify the usage and establish more usabil-
ity to the number, we broke these into categories of influencers
associating levels of influence based on their relative scores.

In Practice
At INL, this process has been instrumental in helping to iden-

tify influential stakeholders. In mid 2010, Information Manage-
ment (IM) was given the charge to lead up efforts to transform
the workplace at the laboratory through an initiative called High
Performance Workplace. Since this initiative involved culture,
information and process and not simply a technological change,
it was imperative to identify influential stakeholders throughout
the laboratory that would act as change agents for the initiative.
Through use of the power map, we compiled a list of individu-
als throughout the organization with whom we could engage to

CrossTalk—July/August 2011 19

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

generate the “grass roots” support of the initiative to execute ef-
fective change. This distributed engagement with key individuals
both at the management level and the organization level allowed
us to ensure both a top-down and bottom-up approach to orga-
nizational change management. This approach has established a
framework for success for the initiative.

Conclusion
With this categorization of employees, we have the capability

to have a better understanding of where the true power in the
organization lies. It also helps us to determine key individuals
in the organization, which serves as one input into the decision
making process for project initiation based on the relative impor-
tance of the request to the organization.

Through the application of methods and innovation that
propelled Google to the top to a strategic toolset from Gartner,
we were able to create a sustainable and objective manner to
facilitate in the project initiation phase.

Disclaimer:
This manuscript has been authored by Battelle Energy Alliance, LLC
under Contract No. DE-AC07-05ID14517 with the U.S. Depart-
ment of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that
the United States Government retains a nonexclusive, paid-up, ir-
revocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes.
STI Number: INL/JOU-10-19794

Sharon Berrett has been employed at INL for 31 years. For
most of that time, she worked a project manager overseeing
various IT and research projects. She worked in the IM Stra-
tegic Planning organization as a strategic liaison. Her most
recent assignment is as a strategist in the Portfolio Manage-
ment Directorate. Ms. Berrett is PMP certified and holds a
Bachelor’s of Science in Business Administration.

Sharon Berrett
Idaho National Laboratory
P.O. Box 1625
Idaho Falls, ID 83404
E-mail: Sharon.Berrett@inl.gov
Phone: 208-526-9629

Troy Hiltbrand is the manager of IM Strategic Planning and
Enterprise Architect at INL. In this capacity, he is involved
with coordinating efforts to align IM activities with Labora-
tory strategy and vision. Mr. Hiltbrand is PMP certified and
received a BA from Utah State University in 2000 and an
MBA from Idaho State University.

Troy Hiltbrand
Idaho National Laboratory
P.O. Box 1625
Idaho Falls, ID 83404
E-mail: Troy.Hiltbrand@inl.gov
Phone: 208-526-1092

ABOUT THE AUTHORS

1.	 French, J. &. ‘The bases of social power,’ in D. Cartwright (ed.)
	 Studies in Social Power. Ann Arbor, MI: University of Michigan Press. 1959.
2.	 Stross, R.. Planet Google. New York City, NY: Free Press. 2009.
3.	 Google, I.. Technology Overview. Retrieved April 29, 2010, from Google: Corporate 	
	 Info: <http://www.google.com/corporate/tech.html> 2010.
4.	 Mesaglio, Mary; Aron, Dave;. Leading from your Power Base: Toolkit. Gartner. 2007.

REFERENCES

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

Software’s Greatest Hits and Misses
November/December 2011

Submission Deadline: June 10, 2011

High Maturity - The Payoff
January/February 2012

Submission Deadline: Aug 10, 2011

Securing a Wireless World
March/April 2012

Submission Deadline: Oct 10, 2011

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

mailto:Sharon.Berrett@inl.gov
mailto:Troy.Hiltbrand@inl.gov
http://www.google.com/corporate/tech.html
http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

20 CrossTalk—July/August 2011

Management Practices for Quality Products

Background
More than six years ago, Intel Corporation’s 5,000-person

IT organization embarked on a journey to improve its internal
development processes in an effort to increase development
efficiency and address customer satisfaction issues. One of the
key approaches learned by the author during this time was to
shift his thinking from “Building Processes” to “Building a Prod-
uct;” in essence, to apply the lessons learned in his software
development to process improvement activities.

1. Know Your Market
Software products typically have marketing plans that identify

target markets, the size and composition of the segments within
those markets, and a description of the customers within those
segments and their needs. These plans allow products to be
focused on meeting the most important needs of the most valu-
able markets. In addition, this enables products to be created
that are matched to the skill and experience level of users in
those markets.

Our early attempts at process improvement work were lacking
this type of information and as a result, our process improve-
ment team assumed our market was large, high-risk, and
long-duration projects that were led by very experienced project
managers. In reality, the majority of the projects were smaller,
shorter, and lower risk than had been assumed, and many were
led by individuals who were inexperienced in the role (Figure 1).

Terry Leip, Intel Corporation

Abstract. We are often told that process improvement activities should be man-
aged as a project, but seldom do we hear that they should also be managed as
a product. Key decisions ranging from high level strategies to the deployment
of improvements can become much simpler when we view the approach of our
process improvement work in the same way we would for the development of
more conventional software products. This article discusses six examples of this
concept that will help you not only simplify process improvement decisions, but
improve the odds of success in your process improvement activities.

Figure 1: Sample aspects of target market (projects in IT)

The inevitable result was that the process improvements
did not meet the needs of the user base; both informal feed-
back and audit data showed that processes were neither well
received nor widely used.

Through this and other similar experiences, we learned that
we could not make assumptions about our customer base and
expect to be successful. Even though our understanding of our
markets continues to develop, we now know a great deal more
about how the typical project looks in terms of size, experience,
duration and other key attributes. The most recent releases of
processes and training have been rewritten with these char-
acteristics in mind so that we are not only better meeting the
needs of the projects, but we are also no longer supporting

Product
Thinking
in Process
Improvement

CrossTalk—July/August 2011 21

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

Figure 2: 2007 vs. 2009 Project Manager Survey Results

material which isn’t being used. In a “before and after” survey
from our users (Figure 2), we found that customers feel that our
product is much easier to use as well as more applicable to the
size and complexity of their projects.

2. Product Architecture is Important
In software development, a good architecture helps ensure

that a product not only meets the requirements, but that the
product can be more easily maintained and extended over time.

Four years of documentation changes combined with the
lack of defined process architecture left us in the situation
where process resided in templates, training had found its way
into in our processes, and policy had become intermixed with
processes. The resulting patchwork of documents had become
extremely time consuming for us to maintain and difficult for
users to find needed information quickly. In addition, this lack of
structure also resulted in users being required to enter the same
information in multiple locations.

Faced with increasing maintenance effort and a chorus of
customer feedback, we performed an evaluation of the required
data for all of our templates and tools. We attempted to identify
where the same information was required to be entered in more
than one location. This simple analysis yielded some surprising
results: For a cascading waterfall lifecycle project (about 70% of
our projects), there were a total of 150 duplications of required
data over the life of the project. The single largest offender was
the problem statement, which was duplicated in a total of six
different locations (Figure 3).

In addition to the reductions of required data, we defined a
process architecture that included a clear definition of what type
of information resided in which type of documents. We then
kicked off a project to rewrite our process materials follow-
ing that architecture, as well as targeting the aforementioned
duplications. The results from this effort were very rewarding
(a reduction of redundant data entry by more than 70% and
positive survey feedback from our customers), however the
rework has been costly and could have likely been avoided if
an architecture had been clearly defined before our processes
were initially developed.

3. Beware of “Free Features”
When building software products, it has been often said

that there are no free features; everything must be developed,
tested, supported, and maintained. In software there is often the
temptation to toss in a few seemingly simple features or to add
a minor last-minute request from a key customer. The problem,

Figure 3: Sample of data entry redundancy analysis

of course, is that maintenance activities are often 60-80% of
the total costs of software and every one of these free features
must be maintained regardless of their value to the customer.

We have found the same is true with our product; every extra
process step, guideline, template, or checklist requires devel-
opment, testing (i.e., reviews), support (training, coaching, and
auditing), and maintenance. We had fallen into a habit of saying
“yes” to almost every customer request in an attempt to please
our customers, regardless of the scope of use or cost to main-
tain. As a result, our suite of documentation had grown to more
than 1,400 pages spread between 200 or more documents, and
even minor changes required updates to a multitude of areas:
Process, templates, guidelines, checklists, examples, training,
etc. At one point, we had two types of requirements templates
and three types of test plan templates with detailed examples
to accompany each one. Based on often isolated requests, we
had created detailed process steps for seldom used processes
and built templates which included far more data items than the
majority of the users ever needed.

Our 2008 process release focused on removing these free
features that had crept into our product. We condensed the
number of similar templates, dropped the examples, and took a
bold step to reduce our process documentation and templates
to the absolute bare minimum possible (typically one to two
pages per document, just focusing on the essentials).

The results were dramatic; we shrank our collection of pro-
cesses, templates and checklists by more than half (Figure 4),
and we are projecting savings of more than $25,000 per year
in reduced internal maintenance costs, and users actually found
that the resulting materials were easier to use.

22 CrossTalk—July/August 2011

Management Practices for Quality Products

We also recognized that we needed to address this stream of
low-value features and change our current behavior to prevent
our product from winding up with the same problems in the
future. To do this, we beefed up our process for handling feature
requests, including creating a simple tool for scoring change
requests as high, medium, or low against four value drivers
(Figures 5 and 6).

Figure 4: Reduction of documentation size

Figure 5: Feature request ‘scoring tool’

Figure 6: Feature request scoring legend

Using this approach and tool, we have been able to reduce the
number of low value changes (our overall rejection rate went from
10% to 33%) and most surprisingly, users have been very under-
standing when we say “no,” in large part due to being made aware
that a standard set of criteria is being used in making the decision.

4. Change your User Interface Cautiously
and Infrequently

In software projects, development teams are careful about
radically changing the “look and feel” of an established ap-
plication because they know that once users are accustomed
to using their product, they will need to spend valuable time to
relearn things that have changed. In process improvement, the
interfaces are the templates, process documents, and web sites
where they are contained.

We learned this lesson when we performed our first round of
process improvements in 2005 [1] to reduce the complexity of
key areas of our processes and templates. When the updated
materials were deployed in the organization, we were surprised
to discover that many users were upset by our improvements
because they had grown accustomed to the look, feel, and the
steps of the previous processes. Even though the new versions
had fewer and simpler steps, they still required the project teams
to spend the time and effort to learn the new interface.

The key learning was that our users want to spend their
time and energy doing their work rather than relearning new
interfaces to our product. In the intervening years, we have
become much more cautious about changing interfaces and
have learned a great deal regarding how to minimize the impact
of changes. One major improvement was to simply reduce the
frequency of large changes and we now work on a cadence of
two releases per year, and any substantial changes to interfaces
that must happen are grouped into one of those releases rather
than dribbling them out over time. This more predictable ap-
proach has greatly reduced the complaints and anxiety that we
experience with past changes.

5. You Cannot Just Ask Users What They Want
One of the most commonly encountered issues when discuss-

ing software requirements is that you can not simply ask users
what they want and expect their answers to be correct and
complete. It is not that users do not want to provide good require-
ments, but that they are often too close to the issues and often
have many unstated assumptions about how they really work.
People developing software requirements know that multiple elici-
tation techniques should be used to properly understand the real
problems to be solved and uncover the true requirements.

In the early days of our process work, we routinely collected
our process improvement feedback from customers during qual-
ity assurance audits and via change requests from any users
that cared to submit them. The bulk of these suggestions were
for “less process” or minor changes to templates or processes,
but seldom addressed issues that would improve overall project
execution. Last year, we analyzed the results from more than 60
project postmortems and discovered that virtually none of the
issues or solutions identified by the postmortems related directly
to our user feedback (see Figure 7).

This tool produces an overall score that gives us a consistent
standard for ranking feature requests and supports rejecting
those requests that do not have sufficient value to justify the costs
involved to our customers and our process development team.

CrossTalk—July/August 2011 23

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

Figure 7: Roll-up of Project Post-Mortem Issues

Given that one of our key business objectives was to meet
delivery commitments, we recently started performing formal
root cause analysis of projects that missed their committed
release date. This data has shown that issues with the perfor-
mance of vendors and sufficient resources are the drivers for
65% of late project deliveries. In addition, we recently engaged
in more sophisticated business-problem focused interviews with
randomly selected project managers and test leads to uncover
issues impacting key outcomes such as product quality. The
results of this activity identified issues such as management
dictating scope, schedule and resources, and an IT mandated
26-week project duration limit as large drivers of quality issues
(see Figure 8).

While we are still struggling to gather our requirements using more
sophisticated methods, our understanding of our customer require-
ments has improved substantially since we have moved beyond
simply asking our customer, “How can we improve our processes?”

6. Provide Strong Customer Support
Many of us have the experience of calling a customer sup-

port hotline for a product and after navigating the phone menu
waiting for an extended period of time. When we finally speak
with a real person, we then discover that they have insufficient
knowledge to help us. The key is that without solid support,
many customers may become frustrated and simply give up on a
product and not bother to use it.

One of our earlier and better decisions was to provide
process coaches and quality assurance auditors who not only
knew the processes, but also had real-world experience using
them on projects. This allowed them to help our customers to
understand both the value of the processes and how to appro-
priately apply them to projects. This support was instrumental in
ensuring that project teams did not give up in frustration when
they did not know how to use a process or tool. Feedback from
project teams has been overwhelmingly positive towards this
effort, with many project teams indicating that they would not
have been able to adopt the processes without the support. The
bottom line is that if it is too hard to use a product, customers
will not use it fully or will not use it at all; the same is true for
any process improvement “product” as well.

Figure 8: Samples of customer issue data

24 CrossTalk—July/August 2011

Management Practices for Quality Products

Conclusion
I have provided only a few examples of applying “product

thinking” to process improvement, but I continue to find new
applications nearly every day. The key is to step back from deci-
sions and ask the question, “How would we address this process
improvement issue if this was a software product?” I think you
will discover that many formerly perplexing process improvement
issues become clearer and solutions become obvious when you
make this key shift in your thinking and approach.

Disclaimer:
Other names and brands may be claimed as the property of others
Intel, the Intel logo, Intel. leap ahead., and Intel. Leap ahead. logo
are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

© 2010 Intel Corporation. All rights reserved.
This article is for informational purposes only. INTEL MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, IN THIS ARTICLE

Terry Leip is a Process Engineer in the
Operational Excellence group at Intel
Corporation’s IT Flex Services. He has more
than 20 years of software development and
quality experience with Intel and Lockheed
Martin. He holds a bachelor of science
degree from Grand Canyon University, is a
Six Sigma Green belt and an SEI authorized
CMMI SCAMPI B/C Team Lead.

E-mail: Terry.Leip@Intel.com

ABOUT THE AUTHOR

1.	 Brodnik, Mark, et al. “Why Do I Need All That Process? I’m Only a Small Project”, 	
	 CrossTalk February 2008

REFERENCES

mailto:Terry.Leip@Intel.com
http://www.acq.osd.mil/se
http://www.dhs.gov

CrossTalk—July/August 2011 25

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

Introduction
The AV-8B Software Development Task Team has success-

fully maintained and enhanced avionics and support products
for the Harrier II aircraft for the better part of a decade. While
there are several factors that contribute to its success, a key
element is the team’s ability to provide timely and accurate cost
and schedule estimates to its management and customer. This
was not always the case. When the team first began prepar-
ing software estimates, it was ad-hoc. At that point, neither the
Software Development Task Team nor its management had faith
in the estimates. When the team adopted the Team Software
ProcessSM (TSP)/Personal Software ProcessSM (PSP), it became
a priority to define and document accurate estimates. In order
for a team to execute a successful TSP/PSP project, the task-
ing estimates need to be well defined and communicated. If not
done, the team will not buy into the resulting schedule and plan
which could put the project in jeopardy of failure.

Background
The Naval Air Warfare Center Weapons Division (NAWCWD)

AV-8B Joint System Support Activity has successfully applied
TSP/PSP for software development and maintenance projects
for nine years.

This began in the spring of 2002 when the software develop-
ment task team began the H2.0 block upgrade maintenance
software effort [1]. Since then the software team has completed
an additional four block development efforts (H4.0, H5.0, H5.1,
and H6.0) and is currently working the H6.1 block development
effort. The block efforts typically last approximately two years
and incorporate the TSP/PSP framework.

Up until 2002, all estimates were performed by a single
individual, the lead software engineer. These estimates did not
follow a documented process, much less a proven method.
The estimates were rough and relied on engineering judgment
(i.e., the estimates were prepared using the old “thumb to the
wind” method). It was up to the team to develop a consistent
estimation process. However, several questions needed to be
addressed as part of this effort: How would the team determine
the accuracy of its estimation approach? How would they know
if the estimate was complete? Would something be missed?
Could a reliable schedule that the team could execute against
be produced from a set of detailed estimates? To compound
matters, the team found out that the program office required
multiple types of estimates. These estimates were needed to
support the team’s management in making budgeting, planning,
and build decisions.

Types of Estimates
TSP projects are initiated by a project launch. This is a four-

or five-day workshop where the TSP project team develops the
project plan. Key roles, goals, objectives, requirements, and con-
straints are established during this workshop. Most importantly,
for this discussion, the team establishes a detailed estimate and
an overall project schedule [2]. Therefore, the software team’s
launch success was predicated on the team’s ability to have an
accurate reliable method of performing estimations for which to
generate a realistic schedule. In order to be successful, the team
needed to provide as accurate of an estimate as possible, but
estimates were being provided by the team having had no prior
experience in software estimation and with limited resources. In
order to accommodate the types of estimates needed by both
management and the software team launch, the team estab-
lished the following: High Level (30,000-foot) Estimate, Low
Level (10,000-foot) Estimate, and detailed estimate.

High Level Estimate: This estimate is also referred to as the
30,000-foot estimate or a rough order of magnitude and does
not contain details since, at that height, you would not see any
details. From a conceptual point of view, management may want
to integrate some new capability into the software and needs
a not-to-exceed cost estimate. Typically, Technical Interchange
Meetings are held for the purpose of discussing both a proposed
capability (including modification to an existing one) and the
general idea of how the new software would function. However,

Developing an
Accurate,
Reliable Method

Abstract: From a management perspective, it is essential that software esti-
mates used in a TSP launch are as accurate as possible. Significant growth due
to estimation inaccuracy can wreak havoc on a team attempting to stay within
cost and schedule while executing its established plan. This article discusses how
a software team that uses both proxy-based and size-based estimates is able to
accurately plan, launch, and execute on schedule.

Bob Sinclair, NAWCWD

Chris Rickets, NAWCWD

Brad Hodgins, NAWCWD

Software
Estimation

26 CrossTalk—July/August 2011

Management Practices for Quality Products

at this level there are no formal requirements; hence, the concept
of a 30,000-foot estimate. Why? From 30,000 feet, there is not
enough detail to get a clear enough picture of all the areas of
code that are affected or needed. This type of estimation is used
in order to determine if it is feasible and cost effective to proceed
into development. Once the TIMs have occurred, an estimate of
this type typically takes a day or two to develop.

Low Level Estimate: Once management has determined
that the new or modified capability is worth funding and ap-
pears to be within the budget, they may request a more refined
(i.e., more accurate) assessment. Additionally, the functionality
of the proposed capability may be reduced or increased, de-
pending on the budget available. At this point, there is typically
a better understanding of what needs to be done. Level 1
requirements (high level system requirements) may be avail-
able, along with view graphs calling out detailed functionality;
hence, the concept of a 10,000-foot estimate. Things are a
little clearer and better defined.

Detailed Estimate: The detailed estimate is performed prior
to, and in preparation for, the TSP Launch. During this phase,
the Software Engineer (SWE) that is preparing the estimate
works with a Systems Engineer1 to understand both system
and software functionality and to evaluate the requirements.
The SWE develops a conceptual design that identifies the initial
architectural components. These components are then mapped
to development tasks, which are workable sized tasks that are
identified as development or maintenance tasks. The informa-
tion associated with each task is documented in a standardized
spreadsheet. A set of spreadsheets will be used to document
the estimates for each capability with one spreadsheet per af-
fected subsystem. At this point in the Software Estimation, Level
2 system requirements may be available, as well as data from
formal program reviews. This is typically in the form of Critical
Design Review or Preliminary Design Review slides and action
items. These inputs are taken into consideration, if available.
The tasks are then divided among the team so that they may
prepare detailed task estimates. These task estimates will be
documented in the spreadsheets.

Software Estimating (Proxy-based vs. Size-based)
Early on in H2.0 block development, the team realized that

the lifecycle for new software development did not address
problems associated with software maintenance. Therefore,
a lifecycle for maintenance was developed that did not use
size-based estimates but used proxy-based estimates instead.
The primary reason for both the new lifecycle and the focus on
proxy-based estimates is that the development pattern that is
followed for maintenance is not consistent with that for new
development. For example, in some cases a significant amount
of time must be spent identifying the source of the problem
with little time up front spent identifying the fix, followed by a
significant amount of time spent verifying and testing the fix.
Therefore, the software team decided to use the PSP concept
of proxy-based estimation. The proxy sizes and times were
adjusted over time based on actual data until it stabilized. It took
approximately three years before the team identified the four
proxy (size to effort) categories [3]:

Figure 1: Proxy Size-Estimating Table

These proxy sizes have stood the test of time and have not
deviated since the H4.0 block build. Originally, the software
team used size-based estimates for all new development efforts
and proxy-based estimates for maintenance efforts. But this
was later abandoned when the team realized that both types of
estimation techniques could be used with either new develop-
ment or maintenance efforts. Analysis of the team using proxy-
based estimates showed that the software team was accurate
when estimating small and medium tasks, but the complicated,
larger maintenance tasks were more difficult to accurately
estimate the level of effort involved [3]. The team has developed
two strategies for handling these more complicated tasks: (1)
change the estimation type to size-based or (2) break the task
up into small- and medium-sized tasks and use the proxy-based
method on the resulting tasks.

Software Estimating Tool
In an attempt to improve estimation accuracy for large and

extra large tasks, the software team developed an estimation
tool to assist developers in making proxy-based estimations. At
first, the software team felt that this tool was a good concept, but
after using the tool for several years, the software team found
more disadvantages than advantages. The advantage was that
the tool provided new SWEs with a means to ensure that they
did not underestimate the size of a task. The disadvantages were
experienced by the seasoned SWEs. Once seasoned engineers
enter their data, they would often find their engineering judg-
ment disagreeing with the tool. When this was the case, they
would simply change the answers to the questions until the tool
produced what they felt was the proper proxy size or ignore the
proxy size that the tool provided altogether and submit their own.
Another disadvantage was that it became difficult to identify what
the correct questions for the tool to ask should be, along with the
correct computations and weightings to represent each question’s
impact on the estimated proxy size, to get around the previous
disadvantage. This last disadvantage resulted in one SWE spend-
ing a considerable portion of time working on refining the size es-
timation tool rather than working on actual software tasking (i.e.,
modifying the size estimation tool had become a time-consuming,
never-ending chore)[3]. For this reason, the team abandoned the
tool concept and adopted establishing an estimating process and
spreadsheets to capture the estimates.

CrossTalk—July/August 2011 27

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

A Detailed Estimating Tool is Born
As mentioned earlier, the software team needed to establish

a stable way of performing estimations. Initially, estimates were
captured in a text file, but this became hard to track and each
estimation file did not resemble the next. The team then adopted
a spreadsheet approach. At first, the spreadsheet files were
simple, but over time they have evolved into MACRO-driven and
organized sheets that are very effective in capturing all tasking,
size, and lifecycle model information needed for a TSP Launch.
This was a departure from the software estimating tool where
the SWE would answer questions and the tool would factor in
criteria to determine the estimation. The detailed estimating
spreadsheets and their usage is described below:

Rollup Sheet: The first sheet in the file is a rollup of all other
sheets that contains each component or task and its associated
data (i.e., Source Lines Of Code (SLOC), lifecycle used, sub-com-
ponent name, etc). All SLOC on the first sheet is rolled up at the
top of the page to allow size determination. During a launch, there
is typically no need to go further in the file than the rollup sheet
for populating the Work Breakdown Structure (WBS) size data. A
typical estimation workbook will contain the following:

Assumptions Sheet: This sheet captures any assump-
tions that are being made which could affect the level of effort
needed to complete the tasks within the sheets.

Architecture Sheet: This sheet is used to capture the
conceptual design/architecture that the tasking sheets support.
Any change to design could cause tasking sheets to be added,
modified or removed.

Tasking Sheets: Each component/tasking sheet contains
the requirement, the files affected, description of changes to the
file and the SLOC count. The SLOC is rolled up and displayed
at the top of the sheet. Once all requirements are entered, files,
changes, and SLOC are identified, the SWE can then determine
and select from a drop-down menu the lifecycle model to be
used for this component/task. If the lifecycle supports proxies,
then the proxy size is also selected from another drop-down
menu. Once all tasking is identified for the sheet, it can be inte-
grated into the rollup sheet.

Once the launch is complete, these tasking sheets contain
the detailed effort needed to complete each task and can now
be used by the assigned SWE in determining what the assigned
tasks in the WBS entail.

The detailed estimate spreadsheets works so well that it is now
also used for High Level and Low Level estimating, although very
little detail is added on the tasking sheets in these estimates.

Quality
The next step in the estimation process is for the estimates to

be inspected. For 30,000-foot and 10,000-foot estimates, the
software development task team Lead and software subsystem
technical expert will review the estimate. For detailed estimates
created before a launch and during the development cycle, the
software team will review them as part of the final check. During
these reviews, all defects including both substantive and minor
documentation issues are addressed. All identified defects are
reworked as required.

Estimation Currency
As mentioned previously, each capability that is produced in a

block development undergoes several iterations of estimates. Initially,
in order to support the customer’s build decision the software team
will create a 30,000-foot estimate. Later, when the customer has
made the decision to build the capability, the software team will
create a 10,000-foot estimate to support the customer’s budgeting
and funding activities. These course estimates may be updated as re-
quired by the customer. Then, before the first launch to support block
development, the software team will create a detailed estimate. This
estimate will support the launch activities and will result in a schedule
and cost that management and the software team will work with
going forward. The software team uses Process Dashboard2 to track
the development effort. It is this detailed estimate from the launch
that will be used as the plan of record in Process Dashboard.

As the development proceeds, new system and software require-
ments will be added to the project that will require the plan to be
modified. The estimates that are associated with these new require-
ments will be updated, as will the plan of record in Process Dash-
board. Also, every six months the team revisits its capability estimates
and re-launches the project. This is primarily a realignment of the
team’s plans to accommodate project progress and changes to the
organization’s direction and priorities [2]. In order to realign the proj-
ect plans to the new guidelines, the team must make adjustments
for requirements growth and also accommodate the addition and
removal of capabilities. The result is that management has current
information on the plans for completing the current block. Because
the team is continually updating the task completion information in
Process Dashboard, management has good quality information on
the performance of the team against the plan.

Proof is in the Numbers
So how successful is this approach? Peter Russo, general man-

ager for Microsoft’s IT application architecture group comments that:
“There are two fundamental issues in most IT organizations

today, one being the ability to accurately predict a project sched-
ule, and the other being the quality of the product once you are
finally done” [4].

As Russo points out, identifying a realistic and reliable schedule
is essential. This, of course, cannot be done unless you have solid
tasking estimates from which to create it. In addition, what is the
point of meeting a schedule if the quality of the product is poor?
These issues transcend the boundaries of just an IT organization
and apply to any organization developing software on a timeline
within a fixed budget. Figure 2 shows the actual size in SLOC of
the effort for blocks H4.0 – H6.0. Note that the source size grew
46K between builds H4.0 and H5.0 and 35K between H5.0 and
H6.0. SLOC size is determined by the number of SLOC that are
added and modified to the existing baseline.

Figure 2: Actual Size by block

28 CrossTalk—July/August 2011

Management Practices for Quality Products

Product Quality: There are different measures to indicate
the quality in a product. The book, Code Complete, indicates
that the Industry Average defect density is between 15 and 50
defects per 1,000 Lines of Code (KLOC). Microsoft applica-
tions are produced with a defect density of about 0.5 defects
per KLOC in released code. Organizations using the Harlan
Mills pioneered “cleanroom development” technique have been
able to achieve densities as low as 0.1 defects per KLOC [5].
The software team uses defect density (defects per KLOC) to
determine the quality of its products. Figure 3 compares the de-
fect density of each block delivery against defects delivered by
CMM® level 1 and level 5 organizations. Defects identified here
for CMM level 1 and level 5 are captured from Capers Jones
who has identified software delivered defects at each level of
the SEI CMM [6]. As can be seen, the defect density for all
blocks is significantly lower than that expected of a CMM level
5 organization. In addition, the quality is better than Microsoft’s
threshold and approaching that expected by those using the
cleanroom development technique.

One notable trend is that the quality of the finished product

The number of tasks identified for each block was 11, 62, 45,
and 204 respectfully. Although the number of tasks grew signifi-
cantly by H6.0, the team was still able to accurately estimate
this size category.

For medium software development efforts (Figure 5), the soft-
ware team did a good job of identifying these tasks. They im-
proved with each development effort given that H5.0 and H6.0
only varied by 2%. The number of tasks identified for each block

Figure 3: Defect Density

decreases as the size of the product increases. For these three
data points the relationship is almost linear; the defect density
increases by about 0.002 per KLOC. Other factors including
task complexity and team volatility may have an affect on the
quality, but were not factored into the data. That being said, the
quality of the software at release is high.

Proxy Estimating Accuracy: As mentioned earlier, estab-
lishing a reliable schedule requires accurate software estimates.
Given that the team is developing high quality products, figures
4-7 illustrate how well the team did at estimating task sizes
indicated in the Proxy Size Estimating Table (Figure 1).

For small software development tasks (Figure 4), the software
team did an excellent job identifying them and improved its
estimation accuracy with each consecutive development effort.

Figure 4: Small Proxy Estimation Accuracy

Figure 5: Medium Proxy Estimation Accuracy

was 61, 65, 50, and 291 respectfully. Although the number of
tasks grew significantly for H6.0, the team was still reasonably
accurate in estimating this size category.

For large software development efforts (Figure 6), the number
of tasks identified for each block was 37, 29, and 76 respectful-
ly. H5.0 did not have enough data points in this proxy category
for comparison. Here the team did a good job of estimating and
is improving in this area. But because tasks of this size tend to

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

CrossTalk—May/June 2011 29

be more complex, it is more difficult to estimate as accurately as
compared to smaller task sizes.

For very large software development efforts, the number of
tasks identified for H2.0 was 18 and H6.0 was 21. Both H4.0
and H5.0 did not have enough data points in this proxy category
for comparison. As one would expect, tasks this size are signifi-
cantly more complex and difficult to estimate. In some cases,

Figure 6: Large Proxy Estimation Accuracy

Figure 8: H2.0 Schedule Accuracy

Figure 9: H4.0 Schedule Accuracy

Figure 7: Very Large Proxy Estimation Accuracy

these tasks can be more of what is referred to as “science proj-
ects,” where the task is known to be very complicated and has
too many unknowns to determine what is required. The team
has gotten better at breaking down complex tasks into multiple
smaller tasks. Overall, the team trend appears to be getting bet-
ter at identifying tasks of this size.

In summary, for proxy-based estimations, the software team
did an excellent job estimating the number of small tasks, but
as the data indicates, as the tasks became larger and more
complex it became more difficult to estimate the level of effort

involved. So how well does this estimation methodology support
the production of an accurate plan?

Plan Accuracy: Progress against the plan is described in
terms of earned value, which is based upon the estimated labor
hours needed to complete each task. As the team completes
tasks, they are able to determine how well they have done
in meeting the plan. Figures 8-11 show how well the team’s
execution (earned value) compared to the plan (planned value)
for blocks H2.0-H6.0.

Figure 8 illustrates the planned versus actual earned value
for the H2.0 block project. Initially the actual earned value was
accrued at a significantly higher rate than the planned earned

value. This was a result of the team overestimating the H2.0
tasking efforts. At this point, the team had not yet established
a reliable estimating method. A relaunch occurred where the
graph of the planned value abruptly joins the actual earned
value curve (October 2002). After this relaunch, the team ac-
crued earned value more closely to the planned earned value.

The planned versus actual earned value for the H4.0 block proj-
ect is shown in Figure 9. Between August and November of 2004,
the graph is flat due to missing project data. The team at this point
had established the estimating sheets but still had not bridged

30 CrossTalk—July/August 2011

Management Practices for Quality Products

Summary
The team’s approach in estimating has enabled it to produce

a realistic plan that the team, its customers, and its management
are able to effectively use. Even though the team is now able to
accurately produce a plan from established estimations, it con-
tinues to look for ways to improve its estimating ability because,
in the end, it all begins with quality estimates.

Disclaimer:
®CMM is registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.
SMPSP and SMTSP are service marks of Carnegie Mellon
University.

1.	 Rickets, Chris A, “A TSP Software Maintenance Life Cycle”, CrossTalk, March, 2005.
2.	 Koch, Alan S, “TSP Can Be the Building blocks for CMMI”, CrossTalk, March, 2005.
3.	 Hodgins, Brad, Rickets, Chris, Lindeman, Robert “How TSP Implementation Has Evolved
	 at AV-8B.” TSP Symposium September 2007.
4.	 Grojean, Carol A., “Microsoft’s IT Organization Uses PSP/TSP to Achieve Engineering
	 Excellence”, CrossTalk, March, 2005.
5.	 McConnell, Steve, “CODE Complete”, Microsoft Press, 2004.
6.	 Jones, Capers, “Software Assessments, Benchmarks, and Best Practices”, Addison-Wesley
	 Professional, April 2000.

1.	 At the AV-8B Joint System Support Activity, the systems engineering team is responsible for 	
	 system and software requirements.
2.	 Process Dashboard is a software planning and tracking tool by Tuma Solutions, LLC.

the gap between low level and detailed estimates. Although the
software team’s accrued earned value followed the planned earned
value relatively closely, there are numerous steep and shallow
slopes of the earned value line, reflecting periods during which the
team received extra credit for completing over-estimated tasks, or
too little credit for completing under-estimated tasks.

By the time the software team had launched H5.0, the esti-
mating method was fully established. Figure 10 illustrates the
planned versus actual earned value for the H5.0 block project.
The separation of planned versus actual earned value in the latter

Figure 10: H5.0 Schedule Accuracy

Figure 11: H6.0 Schedule Accuracy

half of the project is due to the delay of several tasks that were
not related directly to the product development. These efforts in-
clude non-product documentation, post-mortem data analysis, and
other non-block related tasks. The team now had an established
reliable estimating methodology and it was beginning to show.

Under the H6.0 development effort, the team continued to
refine its estimating process. The planned versus actual earned
value chart is shown in Figure 11. For 31 months, the software
team was able to accrue earned value very consistently with the
expected planned value. Although it had taken several blocks,
this is the type of planning and execution that the team had
hoped for and had finally achieved.

NOTES

REFERENCES

CrossTalk—July/August 2011 31

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS
ABOUT THE AUTHORS

Robert Sinclair is a senior engineer at the Naval
Air Warfare Center in China Lake, Ca. He has
more than 20 years of experience in developing
software in various capacities for the Air Force and
the Navy. Mr. Sinclair is currently the supervisor of
a group that is developing embedded software. He
holds a bachelor’s degree in Electrical Engineer-
ing from Iowa State University and a Master’s in
System Engineering from Virginia Tech.

Robert Sinclair
NAWCWD
414600D MS 2016
507 E. Corsair Street
China Lake, CA 93555-6110
760-939-6989

Brad Hodgins is an interim TSP Mentor Coach,
SEI-Authorized TSP Coach, SEI-Certified PSP/TSP
Instructor, and SEI-Certified Software Developer for
the Process Resource Team of the Engineering Divi-
sion of the Naval Air Systems Command (NAVAIR)
located at China Lake, California. Hodgins has been
with NAVAIR for 27 years. He has over 20 years ex-
perience as a software engineer developing simulation
and avionics software. He has been applying PSP/
TSP for over eleven years and has coached over 50
TSP/TPI launches. Hodgins earned a BS in Computer
Science from California State University, Chico.

Brad Hodgins
NAWCWD
414600 MS 6308
9100 N. Knox Road, Bldg. 01494
China Lake, CA 93555-6110
Phone: 760-939-0666

Chris Rickets is a senior engineer at the
Naval Air Warfare Center, China Lake, Ca.
He has more than 26 years of experience
in developing embedded software for the
Navy. Mr. Rickets has been involved in
Harrier block upgrades H2.0 – H6.0 and
is currently the Mission Systems Computer
Technical Lead for the H6.1 block effort and
the supervisor for the software developing
team. Mr. Rickets holds both a BS and MS
in Computer Science from California State
University, Chico.

Chris Rickets
NAWCWD
414300D MS 2016
507 E. Corsair St.
China Lake, CA 93555-6100
Phone: 760-939-5838

The Software Maintenance Group at Hill Air Force Base is recruiting civilian positions
(U.S. Citizenship Required). Benefits include paid vacation, health care plans, matching retirement fund,

tuition assistance and time off for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

Send resumes to:
phil.coumans@hill.af.mil

or call (801) 586-5325
Visit us at:

http://www.309SMXG.hill.af.mil

mailto:phil.coumans@hill.af.milor
mailto:phil.coumans@hill.af.milor
http://www.309SMXG.hill.af.mil

32 CrossTalk—July/August 2011

Management Practices for Quality Products

 Introduction
Various studies (e.g., [1]) suggest that around 40% of all

software defects could have been detected using Automated
Static Analysis (ASA)1 tools. ASAs are also supposed to help
in reducing field failures and time to market. Accordingly, many
defense and non-defense projects are increasingly deploying [2]
[3] ASAs such as Polyspace [4] and Prevent [5].

Are the deployments successful? Unfortunately, it turns
out that many of the deployments are failures. Some projects
discontinued ASA altogether. Some continue to use them, but
find that the results are not as effective as they hoped. We
consider both situations as failures of ASA deployment. These
failures stem from the challenges facing ASA deployments. The
first situation is more of a “hard failure” where because of the
challenges facing ASA deployments, some were discontinued
ASA altogether. In the case of the second situation, the failure
is a “soft failure” and they continue to use ASA, but because of
unmet challenges, the results from the deployments are not as
effective as anticipated.

It is important to study the reasons for these failures and the
challenges facing ASA deployments. It will help to learn from
the mistakes of others in deploying ASA. Second, many are
deploying ASA for competitive advantage. Hence, it is important
to avoid failure of the deployment.

ASAs have some weaknesses [6] [7], but the leading cause of
the failures is ill adoption of the tool by the people in the project.

As we will see, just as people are the cause of failure, they are
also the solution to make ASA deployments succeed.

This paper is organized in terms of various stages of introduc-
ing ASA into a typical project. In each stage, after pointing out
how ASA is integrated with that stage, we discuss the chal-
lenges faced and how to overcome them. The first four sections
–software defense application (Section 1), motivating the stake-
holders (Section 2), training (Section 3), and integration into the
process (Section 4)–are a prelude to actual use of ASA. The
next two sections describe the actual use of ASA by individual
developers (Section 5) and at build-time (Section 6). Section 7
adds a feedback stage to tune ASA. Section 8 concludes.

Section 1: Software Defense Application
The defense industry–as shown by projects such as Soft-

ware Assurance Metrics and Tool Evaluation–is paying signifi-
cant attention to static analysis tools [3]. This paper helps DoD
decision-makers, project managers, and developers in deploy-
ing static analysis tools to meet their quality requirements.

Section 2: Motivating the Stakeholders
It is not sufficient to procure the ASA and hope that it will be

used. All the stakeholders–developers, middle management,
and higher management–need to be motivated. Wide accep-
tance of ASA by the stakeholders is a prerequisite to get the
best possible benefits [8].

In reality, some projects do a poor job in motivating the
stakeholders. Lichter et al. [8] found that their ASA deployment
was not as effective as expected because they did not spend
enough time motivating all of the people involved with ASA.

It is difficult to introduce ASA top down, i.e., only driven by
management decision [8]. To get the stakeholders support, they
need to be convinced that ASA is important and they benefit
from it. For example, higher management demands return on
investment analysis, which is a challenge.

Quality Consciousness
ASA is primarily targeted at improving product quality. ASA

deployment suffers if the project is not quality conscious.
Do you have quality goals? Do you reward developers for

meeting deadlines at the expense of quality? Do developers
compete on the basis of fewest defects? Do teams compete
with each other for the fewest defects?

We all know the famous saying that goes, “What gets mea-
sured gets done.” If the project is lacking in quality conscious-
ness, the first step would be to institute some metrics aimed at
quality. Here are some metrics worth considering:

•	 Time to reach system test phase
•	 Number of defects discovered in the system test phase 	

	 and their distribution across teams
•	 Time to reach delivery of system to customers
•	 Number of defects discovered in the field and their

	 distribution across teams

Once the quality metrics are instituted, the next step would
be to suggest ASA as a mechanism to improve the team’s
performance on these metrics.

Abstract. For higher quality software and competitive products, many projects
are feverishly deploying static analysis tools. Unfortunately, it turns out that many
of the deployments are failures. Some have discontinued static analysis tools
altogether. Some continue to use them, but find that the results are not as effec-
tive as they hoped.

There are many challenges facing static analysis tool deployments. Although
static analysis tools have some weaknesses, the main challenge stems from
people. Whether the tool deployment succeeds or fails depends on the people
behind it. What are the challenges facing static analysis tool deployments and
how can those challenges be overcome? This paper tries to answer that question
based on our own deployment of the tools, consultancies with other organiza-
tions, and others’ experiences.

Challenges in
Deploying Static
Analysis Tools
Piyush Jain, Infosys Technologies Ltd

DTV Ramakrishna Rao, Infosys Technologies Ltd

Sathyanand Balan, Infosys Technologies Ltd

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

Demonstrating the Benefits of ASA
Not everyone in the team will be convinced that ASA will

lead to improvement of the team’s performance on its quality
goals [8]. Demonstrating the benefits of ASA using a case study
would convince most.

The case study should show that ASA will be effective at
detecting bugs typically noticed in system test and field. It must
also show that ASA can detect those bugs with less cost and
time compared to the current approaches used in the project.
An example of such a case study conducted in industry is
reported by Baca et al [9]. We recommend that case study as a
model worth emulating for others.

Need for a Champion
Many ASA deployments wither away over time because of a

lack of developer and management support. There is a need for
a champion who takes the responsibility to include ASA in the
development process, and who makes sure that it is sustained.
For example, while deploying an ASA [10], Microsoft put this
strategy in practice and benefited from it.

Section 3: Training
From their experience in deploying ASA, Lichter et al. [8] con-

clude, “You need sufficient theoretical and technical know-how to
apply ASA systematically.” Interactions with ASA require expertise
and defect consciousness [11] on the part of developers. Exper
tise is especially required in (1) configuring ASA, (2) triaging, (3)
extending ASA, (4) underlying technology of ASA, like data flow
analysis and control flow analysis, (5) how to write code so that it
is easily analyzable by ASA, and (6) the internal algorithms used
by ASA. Developers need to be trained to gain the expertise.

Although some projects do provide training on the use of
ASA, it is found to be incomplete. Some managers are not even
aware of the extensive training that is required. The challenge
here is that often managers find it difficult to arrange for training
in these areas either because of a lack of trainers or because
of a lack of information. The training challenges may be met
through a Center of Excellence (CoE).

The organization should establish a CoE focusing on ASAs.
The objective is to have a single point offering the knowledge
that is required to use ASA. For example, the software depend
ability design group at Nortel [12] works with development
teams to train and to include ASA in their development process.
A CoE will also be useful for evangelizing ASA.
Section 4: Integration Into the Process

As the old proverb goes, “Failing to plan is planning to fail.”
Many projects simply drop the ASA into the project and hope
that it will show its benefits. The single most likely reason why
many ASA deployments fail is that the ASA is not properly inte-
grated into the development process [9].

Introducing a new breed of tool into the development process
is easier said than done.

“To be successful, the new tool must fit smoothly into the
existing process–it has to make a difference but not cause such
a disruption that it is perceived as a source of busy work rather
than the solution to a thorny set of problems” [13].

We have observed that management tends to underestimate

CrossTalk—May/June 2011 33

the effort and cost (direct and indirect) of integrating ASA into
the development process–when the reality dawns, ASA suffers
or gets neglected.

Approaches to Integration
ASA is a form of Quality Assurance (QA). Studies (e.g., [14]

[15]) reveal that ASA complements and does not replace exist-
ing QA activities like reviews and testing. Integrating ASA into
a development process and combining all the QA techniques to
get the best of them in the least time possible remains a chal-
lenge. Software development projects have tried two approach-
es and their variations [16]:

1.	Running ASA by a dedicated team: Although tried by many
	 projects, a major challenge with this approach is scalability
	 (as, for example, found at Google [16]).

2.	Running ASA by individual developers.

Section 5: Running ASA by Individual Developers
In this approach, developers apply the ASA as part of their

regular work on a feature or a defect. ASA will be more effective
when applied this way. However, it majorly affects many steps of
the development process.

After finishing implementation, the developer runs the ASA,
weeds out false positives, fixes the real defects, unit tests the
changes, submits the changes for peer review, and checks-in
the changes. This section considers how ASA is integrated with
these steps of the development process, and what challenges
await the project management.

5.1 Estimations
To apply ASA, significant time and effort is required by devel-

opers. Do your schedules take that into account? Many do not.
It is a difficult problem to update estimation models to take ASA
into account. Projects should collect metrics to evolve estimation
models (see Section 7.1).

If sufficient time is not set aside for ASA application2, ASA
deployment suffers because it conflicts with the deadlines
imposed on developers for their work.

5.2 Triaging and Fixing
After ASA runs, it produces a set of defect reports. The devel-

oper has to go through each report to separate true defects from
false positives–a process called triaging. Once false positives are
weeded out, the developer needs to fix the true defects.

Projects vary in how developers triage and fix. In some proj-
ects, developers need not fix immediately, but can open a new
defect report containing the issues reported by ASA for future
triaging or fixing [17]. Often this is done because estimates do
not set aside time for ASA or because of too many false pos
itives. We believe this is a wrong strategy and sets a seed for
failure of ASA.

On the other hand, some projects mandate that developers
must handle all the ASA-reported issues before check-in. If
such a mandate is given–especially without setting aside time–it
leads to a different problem. Developers may label real issues as
false positives or opt for quick fixes [18] just to keep ASA quiet.

34 CrossTalk—July/August 2011

Management Practices for Quality Products

For example, developers are known to simply add a NULL check
if the ASA reports a NULL dereference issue, although that is
not always the appropriate fix.

5.3 Peer Reviews
After unit testing, developers submit the code for peer review.

Not all projects have peer review in their development process.
It plays an important role in ASA adoption.

For ASA, peer review serves two purposes: (1) Deal with the
challenge of making sure that developers applied and handled
ASA reports correctly; (2) Detect those defects missed by ASA.

The review package from developer to reviewers should
include among others: How was ASA configured? What were
the results? How were the ASA defect reports handled? From
this package, the reviewers should verify that false positives are
indeed false positives, identified defects are fixed properly, and
whether ASA should be altered to find more defects, etc.

Based on that review, the reviewers need to focus on detect-
ing those defects missed by ASA. To do that, they need to have
a good idea of the strengths and limitations of ASA–which is
often where they are lacking.

5.4 Human Factors
As Gerald Weinberg says, “No matter how it looks at first, it is

always a people problem.”
For most projects, project sociology is more important than

technology [19]. This applies to ASA use also. ASA is considered
a pure technology, where as it has numerous sociological angles.
Managers tend to focus on technology and not on the sociology
side [20] with the resultant failure of ASA deployments.

In this section, we consider the role developers and reviewers
play in the success or failure of ASA and the challenges they
present to management.

5.4.1 Changing Habits is Hard
The main barrier to adoption of ASA lies in the ability of devel-

opers to impose the discipline required to make ASA a routine
part of their work [17].

Introducing ASA is a change for most developers. Changing
habits is hard [13]. Some regard ASA as a nuisance.

Some ASAs are initially difficult to use, but over time devel-
opers may start appreciating them. This has been confirmed
experimentally [4]: The experimenters created three versions
of code with different errors. For model checking, false posi-
tives decreased across all three versions because of developers
creating better abstractions as the experiment proceeded.

In practice, many developers give up before they come to a
stage where they appreciate ASA. Process methodology and
project management need to ensure that developers persist with
ASA. Management should convince developers that ASA amelio-
rates the frustrating debugging associated with field failures.

5.4.2 Lack of Motivation
Some projects deploy ASAs ad hoc–they depend upon

developer’s motivation in using ASA [9]. Some deploy ASA in a
planned fashion, but they still leave it to the developer to decide
what warnings are important and what are not, etc. Again, a lot

of responsibility is with the individual developer.
When so much responsibility is with a developer, whether ASA

works or not depends on the developer’s motivation. A devel-
oper’s motivation depends on many factors. Do you feel bad
about defects in your code? Developers differ. Where develop-
ers feel proud of their work, the possibility that they successfully
deploy ASA is high, and vice versa. To ensure that ASA is used
by developers, development process should include a rule like
no code can be checked in until ASA results pass a set criterion.
The criterion could be no defects, no severe defects, or fewer
than five minor defects, etc.

Team organization and project policies also have a role in
the developer’s motivation of using ASA effectively. A specific
situation worth considering is the separation sometimes seen
between two groups of development: feature development and
sustenance. The development group introduces new features
and sustenance group fixes defects. For effective ASA, feature
developers need to spend time using ASA. But often the poli-
cies and goals of development group are such that they are indi-
rectly discouraged to use ASA. Some organizations [21] have
the policy where the developer of a feature is responsible for
fixing the defects in the feature. If a feature developer is respon-
sible for fixing the defects, then the developer will have to spend
time to debug and resolve the testing-reported defects. It will
hinder the developer in moving to work on new features. Since
ASA-reported defects can be fixed sooner than testing-reported
defects [22], developers would prefer to use ASA to shorten
their debugging cycles for resolving testing-reported defects.

5.4.3 Reducing Discipline Because of ASA
Because ASA is there to detect defects, will it lead to sloppy

coding by developers and less effective review by reviewers? All
too often a pre-tested module does not get inspected properly,
“Well, that [module] works OK [23]. Why waste time inspect-
ing it?” The situation is analogous with ASA. There is anecdotal
evidence that ASA presence leads to some loss of discipline in
developers and reviewers (based on our interaction with some
project managers). Private self-assessment (see Section 7.2)
would help in mitigating this challenge.

Section 6: Build-time Running of the Tool
To complement developers running the tool, periodical (e.g.,

weekly) ASA is run on the entire codebase. Not all projects
have this important step of build-time running of the tool. In this
step, the ASA is configured to do deeper analysis compared to
developers running the tool. A central team triages the defect
reports and opens defects in defect tracker for later fixing by
developers.

The results of build-time running ASA are also useful for gen-
erating reports and metrics. Although ASAs provide various types
of reports, a major challenge is providing reports management
can understand and relate to. The reports should show trends
of number of defects and defect types across builds. Wherever
possible, the reports should correlate ASA-reported defects to
defects that managers and users are aware of. For example,
maybe an ASA-reported defect could explain a field failure of the
system. Such reports enhance the support of both management

CrossTalk—July/August 2011 35

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

and developers to ASA adoption and helps sustain it.
The major challenge in this stage is not fixing the ASA-report-

ed defects. As mentioned earlier (Section 5.2), other stages in
the development process also contribute to this challenge.

Not Fixing the ASA-reported Defects
You will get the real benefit from ASA only if ASA-reported

defects (after pruning false positives) are fixed [24]. In many
projects, the emphasis on fixing ASA-reported defects is
minimal; hence they tend not to get fixed [25]. It negates the
whole purpose of deploying ASA. We observed that some of the
unfixed ASA-reported defects actually turned up in field.

Here are some reasons that contribute to non-fixing of ASA-
reported defects [7]:

Delayed detection of ASA defects: The later an ASA de-
fect is detected, the lesser the chance that it will be fixed. That
is why ASA defects detected at build-time or by a dedicated
team have a lesser chance of getting fixed compared to defects
detected by an individual developer.

Allowing ASA defects to accumulate: In some projects,
developers do not have to triage or fix the ASA-reported defects
prior to check in (see Section 5.2). This leads to accumulation of
ASA defects and reduces the probability of fixing them.

Severity and priority of ASA defects not clear: Testing
reported defects normally shows that something is broken, and
from that it can be ascertained how urgent the fix is (priority)
and the consequences of not fixing it (severity). ASA defects
normally do not show that.

This challenge can be dealt with in the following ways. First,
developers should be encouraged and facilitated to fix the ASA-
reported defects before check in rather than deferring them.
Second, management should strive for nightly ASA builds rather
than weekly builds, although it might mean infrastructure needs
to be heavily upgraded for a faster ASA run. Management and
developers should determine the right frequency. Third, when
the ASA finds a defect in the nightly build, it should be integrat-
ed with source code management system to find which recent
check in is responsible for this issue. Then it can immediately
inform the associated developer for faster and easier fixing.

Section 7: Retrospectives
Many–but not all–projects have retrospectives, where they

look back on the project. Retrospectives are important for effec-
tive ASA. They help in tuning of ASA and the process.

7.1 Tuning ASA and the Process
Based on the retrospective, ASA should be tuned for detect-

ing new types of defects and for higher performance. The
development process needs to be tuned. For example, estima-
tion models need to be tuned to set aside time to use ASA by
developers in various activities like triaging and fixing. To do the
tuning, the development process should collect related metrics.

7.2 Appraisals
Appraisal of developers is common in software organizations.

ASA can provide additional means to appraise. If not used prop-
erly, it can backfire. The balancing act is a challenge.

ASA provides many metrics and reports (see Section 6).
Many of them relate to defects. The temptation to use them for
measuring developer’s programming capabilities is high [8]. That
is not a good idea [19]. It can easily upset the whole program
of deploying ASA and will be counterproductive [8]. Develop-
ers either find ways to bypass ASA or apply a coding style that
only leads to acceptable results of ASA but not result in overall
product quality [8].

Defect counts and their categorization are especially useful
for developers. While they should not be used to measure devel-
opers’ capabilities, it is important to deploy such metrics for pri-
vate self-assessment [19] and self-learning only. Some projects
do not provide such metrics for private use. Instead, they tend to
deploy metrics for management use only.

Section 8: Conclusion
ASA is an important tool in the quest towards higher quality.

But its deployment is not easy. The challenges include:
•	 Motivation (e.g., not motivating the stakeholders on why the

	 tool is important and how they are going to benefit from it);
•	 Training (e.g., inadequate training on the technology that

	 underlies the tool and not raising the defect consciousness
	 of developers);

• 	Development process (e.g., difficulties in integrating the tool
	 into development process);

• 	Developers (e.g., developers resenting the additional over
	 head of the tool);

•	 Project management (e.g., difficulties in scheduling to fix the
	 tool reported defects);

•	 Performance appraisals (e.g., team dissatisfaction because
	 of appraising engineers using metrics generated by the tool).

Forewarned is forearmed. By being aware of the challenges
one may face in deploying ASA beforehand, one can be pre-
pared to deal with them.

Acknowledgments:
We thank Ilan Kumaran, Thomas George, Sujay Gupta, Ravi

Kumar B, and Srikanth S for sharing their experiences of ASA
deployments and their comments on earlier versions of this
paper. The paper particularly benefited from the insightful and
detailed comments from the CrossTalk Editorial Board.

Disclaimer:
The statements and opinions expressed in the paper are
authors’ own and not their employer’s.

36 CrossTalk—July/August 2011

Management Practices for Quality Products

Piyush Jain, PMP, is a Delivery Manager in Product Engineer-
ing Unit of Infosys Technologies Ltd, Bangalore, India. He has
more than 17 years of experience in software development. In
his role of delivery manager he is responsible for new business
development and end-to-end delivery management of projects
for global customers. He has provided consulting services
to leading networking firms on how to improve engineering
efficiencies and effectiveness of tools deployment in product
development and testing. Prior to taking up management role,
he has had extensive experience in embedded development on
networking products with primary focus on system engineering
and L3 and L4 protocol development. He is PMP certified and
has published papers in PMI India conference and other confer-
ences/forums. He holds a BE in Computer Engineering from
National Institute of Technology (NIT), Surat.

Infosys Technologies Ltd.
Electronics City,
Hosur Road,
Bangalore – 560100
Phone: +918041166289
Fax: +918028521695
Mobile: +919880596947
E-mail: Piyushj@infosys.com

D.T.V. Ramakrishna Rao is a Senior Technology Architect in
the Product Engineering Division of Infosys Technologies Ltd,
Bangalore, India. He has 14 years of experience in software
development with primary focus on building high-end network-
ing systems. He has presented and published 15 papers on
project management, static analysis, networking, and defect
management in international journals and conferences including
CrossTalk, IEEE, IETF, and PMI. He created two new static
analysis tools to detect interfacing bugs and endian bugs. He
has evaluated, deployed, and worked with various static analysis
tools including Coverity’s Prevent, cppcheck, and Sparse. He
recently published the paper “Defect Detection by Developers”
in Mar/Apr 2009 edition of CrossTalk. He holds a B.Tech in
Computer Science from National Institute of Technology (NIT),
Warangal, and an M.Tech in Computer Science from Indian Insti-
tute of Technology, Kanpur.

Mobile: +919845554451
E-mail: ramakrishnadtv@infosys.com

Sathyanand Balan is a Senior Technology Architect in the
Product Engineering Division of Infosys Technologies Ltd, Ban-
galore, India. He has 11 years of experience in software design
and embedded software development for networking systems.
He is a lead architect in a large engineering program for a
global customer. He was part of the tools group that rolled out
a static analysis tool (Coverity Prevent) for a leading networking
OEM in their development process. He has conducted various
training programs on board bring up, Network processors (Win-
tegra), embedded system design and development. He holds a
B.Tech in Electronics and Communication from NIT, Calicut.

Mobile: +919845392221
E-mail: sathyanandb@infosys.com

1.	 In this paper, we use the terms “The Tool” and “ASA” interchangeably.
2.	 Even if developers take additional time because of ASA, overall product release time still tends
	 to improve because of reduction in testing and debugging cycles.

ABOUT THE AUTHORS
1.	 L Hatton. Software failures–follies and fallacies. IEE Review, 43(2):49–52, 1997.
2.	 A. German. Software static code analysis lessons learned. CrossTalk: The Journal of Defense
	 Software Engineering, November 2003.
3.	 Yannick Moy. Static Analysis Is Not Just for Finding Bugs. CrossTalk: The Journal of Defense
	 Software Engineering, September 2010.
4.	 G. Brat et al. Experimental evaluation of verification and validation tools on Martian Rover
	 software. Formal Methods in System Design, 25(2):167–198, 2004.
5.	 A. Bessey et al. A few billion lines of code later: using static analysis to find bugs in the real
	 world. Comm. of the ACM, 53(2):66–75, 2010.
6.	 Paul Black. Static Analyzers in Software Engineering. CrossTalk: The Journal of Defense
	 Software Engineering, March 2009.
7.	 D T V Ramakrishna Rao, Piyush Jain, and Sathyanand Balan. Why Static Analysis Tool Deploy
	 ments Fail? (And How...). In Embedded Systems Conference (ESC), Bangalore, July 2010.
8.	 H. Lichter and G. Riedinger. Improving software quality by static program analysis. Software
	 Process: Improvement and Practice, 3(4):235– 241, 1998.
9.	 Dejan Baca. Automated static code analysis – A tool for early vulnerability detection.
	 PhD thesis, Bleking Institute of Technology, Sweden, 2009.
10.	 T. Ball et al. SLAM and Static Driver Verifier: Technology transfer of formal methods inside
	 Microsoft. LNCS, 2999:1–20, 2004.
11.	 D T V Ramakrishna Rao. Defect Detection By Developers. CrossTalk: The Journal of Defense
	 Software Engineering, pages 8–11, March 2009.
12.	 J. Zheng et al. On the value of static analysis for fault detection in software. IEEE Transactions
	 on Software Engineering, 32(4):240–253, 2006.
13.	 P. Chandra et al. Putting the tools to work: How to succeed with source code analysis. IEEE
	 security & privacy, 4(3):80–83, 2006.
14.	 S. Wagner et al. Comparing Bug Finding Tools with Reviews and Tests. In Proc. 17th Int’l Conf.
	 on Testing of Communicating Systems (TestCom05), pages 40–55. Springer, 2005.
15.	 J. Nazario. Source code scanners for better code. Linux Journal, January 2002.
16.	 N. Ayewah et al. Using static analysis to find bugs. IEEE software, 25(5):22–29, 2008.
17.	 Melissa Webster. The Software Quality Imperative. Technical report, IDC, 2005.
18.	 Russel King. “Do not misuse Coverity please”.
19.	 Tom Demarco. Why does software cost so much? Dorset House Publishing, 1995.
20.	 T. DeMarco and T. Lister. Peopleware: productive projects and teams. Dorset House
	 Publishing Company, Incorporated, 2nd edition, 1999.
21.	 S. Maguire. Debugging the development process. Microsoft Press, 1994.
22.	 Brian Chess and Gary McGraw. Static analysis for security. IEEE Security and Privacy,
	 2(6):76–79, 2004.
23.	 J.G. Ganssle. The art of designing embedded systems. Newnes, 2000.
24.	 Matthew Hayward. The Truth Behind Static Analysis Pitfalls. EE Times, <http://www.eetimes.
	 com/design/embedded/4008210/TheTruth-Behind-Static-Analysis-Pitfalls> January 2009.
25.	 William Pugh. Making Static Analysis Part of Your Build Process. Presentation to the Silicon
	 Valley Java Users Group, 2009.

REFERENCES

NOTES

mailto:Piyushj@infosys.com
mailto:ramakrishnadtv@infosys.com
mailto:sathyanandb@infosys.com
http://www.eetimes.com/design/embedded/4008210/The�Truth-Behind-Static-Analysis-Pitfalls
http://www.eetimes.com/design/embedded/4008210/The�Truth-Behind-Static-Analysis-Pitfalls

CrossTalk—July/August 2011 37

OPEN FORUM

When first working with an organization on tailoring pro-
cesses, they always seem anxious to find out what part or parts
of their processes they can skip. After all, isn’t that what tailoring
is about–taking out the unnecessary parts of a process for a
particular project? After shaking my head once again, I let them
know that tailoring is not about skipping parts of processes but
scaling them to a specific need. This consistent misinterpreta-
tion of tailoring out parts of processes has several causes that
need to be addressed.

For CMMI®, tailoring processes is a major component/aspect
of institutionalizing a “defined process.” It is the primary ele-
ment of Generic Practice 3.1 and what differentiates Integrated
Project Management from Project Planning and Project Monitor-
ing and Control. When done correctly, tailoring takes a generic
process and makes it meaningful to its users. In other words, it
transforms the Organization’s Set of Standard Processes into a
Project’s Defined Process.

Unfortunately, many people that are new to process tailor-
ing assume that tailoring involves eliminating steps or skipping
entire processes. This misinterpretation of tailoring tends to
inhibit the potential of the organization and misses the intent of
tailoring. Besides making a process meaningful, tailoring should
be the source for organizational learning.

I generally find that the usual root cause of the misinterpreta-
tion of tailoring is an organization’s assumption that they should
have a single process. Let’s face it, a “one size fits all” solution
usually fits no one. That is why people are anxious to skip parts
or all of a process when addressing tailoring.

In order to position itself for tailoring, the organization needs
to examine its approach to process definition. It always fasci-
nates me when organizations realize they have different types
of projects but then target the wrong project type to document
their processes. For instance, most organizations will divide their
projects into large, medium, and small based on staff size or
number of estimated hours. They will document their processes
for the large projects and assume they can tailor the processes
down for the other project types.

The problem with this approach is that these large projects
usually are the exception and not the norm for the organization.
It does not make sense to define processes that represent the
least common work for the organization. Organizations need to

Abstract. Frequently, organizations think tailoring is about skipping steps in the
organization’s standard process. This misinterpretation causes many organiza-
tions to backslide in their process maturity and prevents them from gaining great
insight into their process potential. Once an organization learns that tailoring’s
last name is not “out,” they mature their process implementation more rapidly.

Tailoring’s Last
Name Is Not “Out”
David P. Quinn, MOSAIC Technologies Group, Inc.

Standard
De�nition

Inappropriate Process
Targeting

Tailor

Tailor

Standard
De�nition

Appropriate Process
Targeting

Tailor

Tailor

38 CrossTalk—July/August 2011

OPEN FORUM

document processes for the “sweet spot,” where most of the
work is performed. If a medium-sized project represents most of
the organization’s work, the process should be defined for that
project type. The process then can be tailored up or down for
the other project types.

This brings us to another key aspect of tailoring. Tailoring is
really about scaling and scoping, not skipping. Organizations can
tailor up or down, not out. When a project needs more process
detail, more detail is added. When less detail is needed, the
process can be summarized, not skipped. For instance, projects
should always have physical configuration audits. The standard
process may be designed for small projects (one or two person
projects lasting a month or two) since that is the major project
type for the organization. The standard process may state that a
physical configuration audit is conducted right before deliv-
ery. Tailoring for large and medium sized projects may specify
that physical configuration audits are added at the end of unit
testing. Tailoring for large projects may require that physical
configuration audits are conducted at the end of each major
milestone. This is tailoring up for projects, not just tailoring down
(and definitely not out).

Appropriate tailoring needs to happen during process defini-
tion. The organization should identify tailoring factors such as
project size, product life cycle (e.g., new development, main-
tenance, acquisition), customer type (e.g., federal government,
local government, commercial), life cycle model (e.g., waterfall,
spiral, Scrum), etc. These tailoring factors and their instructions
are what create tailoring guidelines as specified in Organiza-
tional Process Definition Specific Practice 1.3.

Other input for tailoring should be the waiver process. When
a project feels the need to do something different from the
organizational standard set of processes, the organization
should monitor this change in order to learn from what is done.
The waiver should specify not only what they will not be doing
from the standard organization process but what they will do dif-
ferently so the organization has a potential alternative practice.
What a project that has a waived process does may identify
additional tailoring factors or additional process options.

Finally, the organization needs to recognize when it is beyond
tailoring and into creating another process for the organization
to add to its set of organizational standard processes. I worked
with a group one time that had three organizational standard

processes to choose from: development, maintenance, and data-
bases. The group I worked with did COTS integration projects.
They would brute force their projects into the development
process by significantly tailoring the process. Essentially, they
were trying to force the proverbial square peg into a round hole.
When I pointed out that they had enough experience at tailoring
the process that they should define a fourth standard process
type, they responded with, “We can do that?” Consistent tailor-
ing should either result in a process change or a new standard
process.

COTS
In

te
gra

tio
n

In-house Development

When preparing to tackle process tailoring, an organization
should keep several thoughts in mind. First, the organization
needs to shoot for the “sweet spot” when defining processes.
The organization needs to identify tailoring factors when
defining the process. The factors could come from the waiver
process and eventually lead to a new standard process for the
organization. Based on the process definition and tailoring fac-
tors, projects will be scaling and scoping the process in order to
tailor it to their specific needs. All this leads back to the primary
thought; tailoring’s last name is not “out.”

Disclaimer
®CMMI is registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

David P. Quinn is the Director for Process Services at MOSAIC Technologies Group, Inc. He has over 25 years
software and systems development, maintenance, and management experience. He has over 15 years experience as
a process improvement consultant, helping large financial firms, defense contractors, telecommunications companies,
aerospace contractors, and healthcare providers. He is certified by the Software Engineering Institute as a SCAMP-
ISM Lead Appraiser and Instructor for CMMI for Development and CMMI for Services.

MOSAIC Technologies Group, Inc.
8161 Maple Lawn Blvd, Suite 430
Fulton, MD 20759
Phone: 301-725-0925 x724
Fax: 301-725-0895
E-mail: dquinn@mosaicsgroup.com

mailto:dquinn@mosaicsgroup.com

CrossTalk—July/August 2011 39

BACKTALK

On Becoming
a Software
Engineer

Once there existed a newly graduated engineer named Fred.
Above all else, Fred had come to appreciate the beauty in writ-
ing elegant and efficient code. Knowing that he lacked wisdom,
he approached a wise master for advice. “Oh Wise Master,” Fred
asked, “How may I become a software engineer?”The Wise
Master looked deep into the heart of Fred, and saw his sincerity.
“There are three tasks you must complete. If you are willing to
undertake these tasks, I can teach you. Are you willing?” “Yes,
Oh Wise Master. I yearn to gain wisdom.” “Very well,” the Wise
Master said. “You must first master the Morass of Meetings. This
is your first task.”

Fred first attempted to slay the Morass. He tried to shorten
and even kill them. However, all was for naught. As he tried to
shorten meetings, they inexplicably became longer. When he
tried to kill the meetings, much like a Hydra, two sprang up from
each one that was killed. Fred began to realize that each meet-
ing had a purpose, and until the purpose was met, the meeting
could not be slain. In time, Fred learned to embrace meetings,
for in meetings, kernels of wisdom could be found. He learned
to balance joint application design sessions, preliminary design
reviews, critical design reviews, user acceptance meetings,
and architectural reviews. He spent much time using e-mail to
organize and arrange meetings learning to respond in a timely
fashion to all manner of unreasonable requests.

After Fred mastered the Morass, he returned to the Wise
Master. “Oh Wise Master,” he said, “I have learned to glean
understanding from the Morass of Meeting, and discern wisdom
from folly. I have found balance in scheduling meetings back-
to-back, and I have even learned to fight the dreaded creeping
waistline found in each meeting’s den of doughnuts. I am ready
for the next task.” The Wise Master saw that indeed Fred had
mastered the Morass, and replied, “Your second task is to tame
the Tangle of Incomplete User Requirements.”

Fred labored long and hard to simply uncover the Tangle, for
many user requirements were frequently obscure and tried to
hide from the light of day. Many were not apparent, and required
discernment to uncover. Nevertheless, Fred persevered and by
virtue of hard work and long hours was able to tame the Tangle
of Incomplete and Inconsistent User Requirements. He was
proud of his achievement, and returned to the Wise Master to
demonstrate his prowess.

The Wise Master was impressed, but cautioned Fred saying,
“You have indeed mastered the Morass of Meetings and tamed
the Tangle of Incomplete and Inconsistent User Requirements.
However, these two tasks were to give you courage so that you
would not be faint of heart for the last task: Juggling Conflicting
and Changing Requirements and Priorities.” Fred trembled at
these words, but did not deter from his mission.

Fred found out that every class of user had conflicting priori-
ties. Every user had changing requirements. Fred also discov-
ered, much to his dismay, that often the budget and schedule
were also conflicting. Even the very management that first set
him forth in his labor often changed their priorities daily. Fred
initially set out to make all users happy, but soon realized that
making one happy often made all the others unhappy. Each
user had a specific priority, and each priority seemed in direct
contrast to all others. Fred eventually realized that no one user
would ever be totally happy–the best that could be accom-
plished was to try and not make any one user totally unhappy.
This “not unhappy” concept filled him with wonder, as he learned
to tradeoff “not unhappiness” in one class of user for more
“not unhappiness” in another. His efforts were herculean, but
eventually he no longer feared for his life when confronting us-
ers. He learned that when requirements and priorities changed,
he needed to arrange more meetings and fight the demons of
incompleteness and inconsistency. In times of great despair, he
found solace in a magic elixir of coffee, antacids, beta blockers,
and aspirin.

At long last, Fred felt happy with his progress, and returned
to the Wise Master. “Oh Wise Master,” he exclaimed, “I have suc-
ceeded in the three tasks that you laid out for me. I have learned
to master the Morass of Meetings. I fought long and hard, and
by dint of effort, managed to tame the Tangle of Incomplete
and Inconsistent User Requirements. And–by the sweat of my
brow and gnashing of teeth–I have even discovered the path to
Juggling Conflicting and Changing Requirements and Priorities.
I have demonstrated my worthiness in accomplishing all of these
tasks. Now, oh great master, I am ready! At last, impart to me
your secrets of becoming a software engineer!”

“Why Fred,” the Wise Master exclaimed, “do you not see? You
have been a software engineer all along! As you have accom-
plished each of these three tasks, you have found your true path
to becoming a great software engineer!”

“But,” Fred interrupted, “I have had no time to write code.
When do I write code?”

“Code?” the Wise Master thundered in anger. “Oh, you want to
write code? Why didn’t you say so? That’s totally different. It has
nothing to do with the tasks I gave you!”

	
David A. Cook, Ph.D.
Stephen F. Austin State University
E-mail: cookda@sfasu.edu

Shamelessly adapted from an idea I found at <http://www.
jokes4teachers.com/J0145.php> (no author was given).

mailto:cookda@sfasu.edu
http://www.jokes4teachers.com/J0145.php
http://www.jokes4teachers.com/J0145.php

CrossTalk thanks the
above organizations for
providing their support.

https://buildsecurityin.us-cert.gov/swa/about.html
http://www.navair.navy.mil/
http://www.acq.osd.mil/se/
http://www.mas.hill.af.mil/
http://www.navair.navy.mil/

	Front Cover
	Table of Contents
	From the Sponsor
	Tribute to Watts Humphrey
	Quantitative Project Management Framework via Integrating Six Sigma and PSP/TSP
	Driving Major Change
	Power and Influence Charting: The Google Way
	Product Thinking in Process Improvement
	Software Estimation: Developing an Accurate, Reliable Method
	Challenges in Deploying Static Analysis Tools
	Open Forum - Tailoring’s Last Name Is Not Out
	BackTalk
	BackCover

